MHB What is the area of an isosceles triangle with side lengths 6, 6, and 4?

  • Thread starter Thread starter Elissa89
  • Start date Start date
  • Tags Tags
    Area Triangle
Click For Summary
The area of the isosceles triangle with side lengths 6, 6, and 4 is calculated using two methods. First, by splitting the triangle, the height is found to be 4√2, leading to an area of 8√2. The second method, Heron's formula, confirms this area calculation, yielding the same result of 8√2. Both methods validate the correctness of the area calculation. The final area of the triangle is 8√2.
Elissa89
Messages
52
Reaction score
0
Side lengths are a=6, b=6, c=4. Find the area

A=1/2*b*h

I split the triangle in half to find the height. Since the base is 4, that divided the base into 2:

2^2+h^2=6^2

4+h^2=36

h^2=32

h=4*sqrt(2)
===========

1/2*4*4*sqrt(2)=area of 8*sqrt(2)

Did I do this correctly? I do not have an answer key to the study guide I was given.
 
Mathematics news on Phys.org
Let's check your answer using Heron's formula...the semi-perimeter \(s\) is 8, hence:

$$A=\sqrt{8(8-6)(8-6)(8-4)}=\sqrt{2^7}=8\sqrt{2}\quad\checkmark$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K