Quite a morass of constructions above. To go back to basics of "
What is the basic scheme of quantum field theories?", the basics of a free field bosonic QFT can be presented by a generating function for time-ordered free quantum field as $$\langle 0|T[\mathrm{e}^{\mathrm{i}\lambda\hat\phi_f}]|0\rangle=\mathrm{e}^{-\lambda^2(f^*,f)_F/2},$$ where ##(f,g)_F## is the Feynman propagator smeared antilinearly by ##f## and linearly by ##g##, so that the n-th derivative w.r.t. ##\lambda## of this at ##\lambda=0## will give ##\langle 0|T[\hat\phi_f^{\,n}]|0\rangle##. I'll mention that ##(f,g)_F## is also proportional to Planck's constant.
An aside: the subscript ##f## in ##\hat\phi_f## is usually called a
test function (take ##f## to be a smooth function that also has a smooth Fourier transform), which is an index or coordinate for a measurement. We can think loosely of the usual quantum field object ##\hat\phi(x)## as what we would get if we took ##f## to be a Dirac delta function at ##x##, but it's better to avoid doing that because a Dirac delta function is not a smooth function. We can think of ##f## as a modulation that is applied to a vacuum state or as like the
window functions of signal analysis, depending on how we use it.
The time-ordered form, however, erases information about the algebraic structure, which we can take a first step towards by presenting a generating function form without time-ordering, $$\langle 0|\mathrm{e}^{\mathrm{i}\lambda\hat\phi_f}|0\rangle=\mathrm{e}^{-\lambda^2(f^*,f)/2}.$$ Everything about the free quantum field algebra can be fixed by a single equation that generalizes the single operator case, $$\langle 0|\mathrm{e}^{\mathrm{i}\lambda_1\hat\phi_{f_1}}\mathrm{e}^{\mathrm{i}\lambda_2\hat\phi_{f_2}}\cdots\mathrm{e}^{\mathrm{i}\lambda_n\hat\phi_{f_n}}|0\rangle=\exp\left[-\sum_{i,j}\lambda_i\lambda_j(f_i^*,f_j)/2-\sum_{i<j}\left[(f^*_i,f_j)-(f^*_j,f_i)\right]/2\right],$$ where in the exponent on the r.h.s. the first term is what would be classically called noise and the second term is the measurement incompatibility that characterizes quantum theory.
For an interacting quantum field ##\hat\xi_f##, in principle all the Feynman diagrams, regularization, and renormalization are trying to do is to deform this expression to give us a new expression, $$\langle 0|\mathrm{e}^{\mathrm{i}\lambda_1\hat\xi_{f_1}}\mathrm{e}^{\mathrm{i}\lambda_2\hat\xi_{f_2}}\cdots\mathrm{e}^{\mathrm{i}\lambda_n\hat\xi_{f_n}}|0\rangle=\,\cdots,$$ a function of all the ##\lambda_i##'s and ##f_i##'s, that we can use to generate any VEV (vacuum expectation Value) and which fixes the algebraic structure for ##\hat\xi_f##, just as we saw above for ##\hat\phi_f##. That gets complicated because for at least the last 70 years the Feynman integral formalism has insisted on using powers of the operator-valued distribution ##\hat\phi(x)##, which is frankly a mathematically stupid thing to do and requires all sorts of desperate first-aid to fix the resulting problems, instead of figuring out ways to construct deformations that use only the well-defined objects, the test functions ##f_i##. In principle the VEVs that are generated by $$\langle 0|\mathrm{e}^{\mathrm{i}\lambda_1\hat\xi_{f_1}}\mathrm{e}^{\mathrm{i}\lambda_2\hat\xi_{f_2}}\cdots\mathrm{e}^{\mathrm{i}\lambda_n\hat\xi_{f_n}}|0\rangle$$ are commonly supposed to be measurable by experiment (unless someone insists that only the S-matrix can be measured, which describes how a state changes between times ##t=\pm\infty##, so go figure why anyone would think that), although they are not exactly close to the recorded measurements of a signal voltage on a wire that is attached to some kind of fancy material coupled to a region of space-time deep within an experimental apparatus.
I'm not sure whether that will be helpful for you or for anyone else, but I find it helpful for me. I particularly find it helpful to think of QFT, free or interacting, as a signal analysis formalism, because all our experimental raw data comes into a computer as voltages on signal lines, which are converted to a binary representation and stored.
All the calculations above are essentially easy to check by using a Baker-Campbell-Haussdorf identity, setting ##\hat\phi_f=a_{f^*}+a_f^\dagger## in terms of creation and annihilation operators and using the commutation relation ##[a_f,a_g^\dagger]=(f,g)##.