MHB What is the basis for $F$ in linear algebra?

Dethrone
Messages
716
Reaction score
0
Let $F$ be the set of infinite sequences $(a_1,a_2,a_3...)$, where $a_i \in \Bbb{R}$ that satisfy
$a_{i+3}=a_i+a_{i+1}+a_{i+2}$
This describes a finite-dimensional vector space. Determine a basis for $F$.
 
Mathematics news on Phys.org
It is easy to see that any sequence $(a_i)$ is uniquely determined by its first three elements, so this vector space has dimension 3. A suitable basis is the set of the three sequences $x, y, z$ defined by:
$$x = (1, 0, 0, 1, 1, 2, 4, \cdots)$$
$$y = (0, 1, 0, 1, 2, 3, 6, \cdots)$$
$$z = (0, 0, 1, 1, 2, 4, 7, \cdots)$$
i.e. $x$, $y$ and $z$ are the sequences defined by the first three elements $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ respectively. It's easy to see that the basis $\{ x, y, z \}$ is linearly independent, for suppose there exists $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ such that:
$$\lambda_1 x + \lambda_2 y + \lambda_3 z = 0$$
Where $0$ is of course the zero sequence. But that would imply:
$$\lambda_1 (1, 0, 0, \cdots) + \lambda_2 (0, 1, 0, \cdots) + \lambda_3 (0, 0, 1, \cdots) = (0, 0, 0, \cdots)$$
That is:
$$(\lambda_1, 0, 0, \cdots) + (0, \lambda_2, 0, \cdots) + (0, 0, \lambda_3, \cdots) = (0, 0, 0, \cdots)$$
In other words, $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and so this set is linearly independent. Finally, it's easy to see that this set spans the entire vector space, since every sequence $(a_i)$ with first three elements $a_1, a_2, a_3$ can be written as:
$$a_1 x + a_2 y + a_3 z$$
Which is in the vector space and has its first three elements equal to $a_1, a_2, a_3$ and so must be equal to $(a_i)$. Therefore $\{ x, y, z \}$ is a basis of this vector space.
 
Last edited:
I hope you'll forgive me that I'm using isomorphisms of vector spaces. (Blush)

Let $f$ be the function $F \to \mathbb R^3$ given by $(a_1,a_2,a_3, ...) \mapsto (a_1,a_2,a_3)$.
Since all elements following $a_3$ are uniquely determined by $a_1,a_2,a_3$, $f$ is a bijection.
Moreover, since $F$ is a vector space, it follows that for all $x,y \in F, \lambda \in \mathbb R$ we have: $f(x+y)=f(x)+f(y)$ and $f(\lambda x) = \lambda f(x)$.
Thus $f$ is an isomorphism of vector spaces.

Since {(1,0,0), (0,1,0), (0,0,1)} is a basis for $\mathbb R^3$, it follows that {(1,0,0,...), (0,1,0,...), (0,0,1,...)} is a basis for $F$. (Nerd)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top