What is the best way to minimize damage in a car crash?

Click For Summary
SUMMARY

The optimal strategy to minimize damage in a car crash, when faced with an oncoming vehicle, is to apply the brakes and collide with a wall rather than swerving or accelerating. This conclusion is based on the principles of impulse and momentum, where a longer contact time during a collision reduces the force experienced by the vehicle. The discussion highlights that modern cars are designed to extend impulse time, thereby reducing the impact on occupants. Ultimately, colliding with another vehicle can be more damaging due to the increased forces involved compared to hitting a stationary object like a wall.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with the concepts of impulse and momentum
  • Basic knowledge of kinetic energy principles
  • Awareness of vehicle safety design features
NEXT STEPS
  • Research the physics of car collisions and impulse time in automotive safety
  • Study the design principles of crumple zones in modern vehicles
  • Learn about the effects of deceleration on occupant safety during a crash
  • Explore advanced crash simulation tools used in automotive engineering
USEFUL FOR

Automotive engineers, safety analysts, and anyone interested in vehicle safety and crash dynamics will benefit from this discussion.

Darquis
Messages
2
Reaction score
0

Homework Statement


You're in a car, and you see a car coming at you in the opposite direction. Assume that both cars are identical in all matters including velocity and mass (neither given). To your left and right are a brick wall, you will hit this head on if you swerve. Is it better to swerve, do nothing, accelerate or hit the brakes?

Homework Equations



J=Ft (Impulse)
Conservation of momentum
Kinetic energy (maybe/)


The Attempt at a Solution



I know that the longer I am in contact with what I hit while still in motion, the longer it takes to transmit the resulting force back to me/my vehicle.

If I hit the wall, best case scenario is I stop right there, because the force is going to act quickly, and whatever momentum I have is going to be balanced by the impulse. If I go backwards, that impulse increases (as I now have a negative momentum, assuming my direction of travel to be the positive), which increases the force and possibly decreases the time.

Conservation of momentum leads me to believe if I crash head on into that other car, which will have the same momentum as me, it will be very similar to hitting that brick wall, assuming our cars don't rebound.

I've been using 20 m/s as velocity and 1000 kg for the car's mass, as both seemed reasonable as far as the problem went, but really they can be anything. Any ideas?
 
Physics news on Phys.org
Well, the two keys here are momentum and impulse. If you are traveling slower then you will have less momentum. Force is related to momentum by F = dp/dt (change in momentum over change in time), so by lowering your momentum you are also lowering your force and impulse. You obviously can't change your mass, so you want to change the other part of momentum.

Items of discretion come from Newton's 3rd law, and how much deceleration both cars can do. If the other car does not decelerate then you will not want to take your chances hitting it (why?). Think about a real life scenario, would you rather hit something that is stationary, or something that is coming towards you at 30m/s?
 
So there'd be double the force acting on me, if we both kept our velocity the same, right? Which means it'd be worse in terms of force on my car if I tried speeding up (although by conservation of momentum, I'd be keeping my direction at least..but suffer a greater overall loss in momentum/velocity).

That makes sense enough to me, thanks. I'd also like to back up my answer with some numbers..if I use the equation J=Ft, what's a typical t for a collision? 1 second? .1 second? less?
 
Right. Given that the other car does not apply the breaks you are better off running into the wall. The best thing to do would be apply the breaks and hit the wall. In real life, you would probably want to hit him because he would apply the breaks too, and his car will have more give than the wall.

Cars these days are specially manufactured so that they have very long impulse times, with the idea of total the car and not the person. I'm not so sure, but I think that a half a second to a second might reasonable.
 
The factor that determines the damage sustained is the magnitude of the deceleration - impulse takes both the force and time interval into consideration. One can obtain the same impulse by "distributing" the force over a longer time, that is the function of air cushions. One need to minimize the amount of sustained g's in an accident. Running into a (sturdy) brick wall brings you to an immediate stop - very large g's are involved. Colliding into another car effectively doubles the length of the crumple section of a single car. That is it is decelarated over a longer length.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 17 ·
Replies
17
Views
4K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 8 ·
Replies
8
Views
4K