MHB What is the centre and radius of convergence for a power series?

Click For Summary
To find the center and radius of convergence for the power series $$\sum_{n=0}^{\infty}\frac{(4i)^n(z-i)^n}{(n+1)(n+2)}$$, the ratio test is applied, leading to the limit $$\lim_{{n}\to{\infty}} \frac{4i(z-i)(n+1)}{n+3} = 4i(z-i)$$. The radius of convergence is determined to be \( R = \frac{1}{4} \), indicating that the series converges when \( |4i(z-i)| < 1 \). The center of convergence is identified as \( z = i \) because the series is expressed in terms of \( (z-i) \). Understanding these concepts is crucial for analyzing power series convergence.
aruwin
Messages
204
Reaction score
0
Hello.
I need someone to explain to me how to find the centre and radius of convergence of power series.
I got the working and the answers but there are some things I don't understand.

$$\sum_{n=0}^{\infty}\frac{(4i)^n(z-i)^n}{(n+1)(n+2)}$$

Using the ratio test, we got
$$\lim_{{n}\to{\infty}} \frac{4i(z-i)(n+1)}{n+3}$$= $4i(z-i)$

Ok, in this part, why is the limit $4i(z-i)$? Don't we have to divide all the terms by n?

And the final answer is: $R=1/4, z=i$

Why does the centre become i?
 
Physics news on Phys.org
aruwin said:
Hello.
I need someone to explain to me how to find the centre and radius of convergence of power series.
I got the working and the answers but there are some things I don't understand.

$$\sum_{n=0}^{\infty}\frac{(4i)^n(z-i)^n}{(n+1)(n+2)}$$

Using the ratio test, we got
$$\lim_{{n}\to{\infty}} \frac{4i(z-i)(n+1)}{n+3}$$= $4i(z-i)$

Ok, in this part, why is the limit $4i(z-i)$? Don't we have to divide all the terms by n?

And the final answer is: $R=1/4, z=i$

Why does the centre become i?

The series $\displaystyle \sum_{n=0}^{\infty} \frac{s^{n}}{(n+1)\ (n+2)}$ converges for |s|<1, so that is R=1 and $s_{0} = 0$. Setting $\displaystyle s = 4\ i\ (z-i)$ You obtain that the series $\displaystyle \sum_{n=0}^{\infty} \frac{\{4\ i\ (z-i)\}^{n}}{(n+1)\ (n+2)}$ converges for $\displaystyle |4\ i\ (z-i)|<1$ so that is $R=\frac{1}{4}$ and $z_{0}=i$...

Kind regards

$\chi$ $\sigma$
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K