What is the Complex Conjugate of a Hermitian Integral in QM?

  • Context: Undergrad 
  • Thread starter Thread starter Mayhem
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around the interpretation of the complex conjugate of a Hermitian integral in quantum mechanics (QM). Participants explore the definitions of Hermiticity, the nature of integrals involved, and the implications of complex conjugation in this context.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants express confusion regarding the interpretation of the complex conjugate of the right-hand side (RHS) integral in the definition of Hermiticity.
  • There is a suggestion that the integrals are definite integrals, which are complex numbers rather than functions of x, as noted by some participants.
  • A participant questions whether it is necessary to evaluate the integral to extract an explicit form of the complex conjugate.
  • Another participant asserts that evaluation of the integral is not necessarily required.
  • One participant presents a formulation involving an inner product defined by a bilinear, self-adjoint operator, but this is challenged by another participant who claims it does not appear correct.
  • There is a light-hearted exchange regarding the textbook used, with one participant guessing it is Griffiths, while another clarifies it is Atkin's Physical Chemistry.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the interpretation of the complex conjugate in the context of Hermitian integrals, with multiple competing views and some disagreements on the correctness of specific formulations.

Contextual Notes

Limitations include potential misunderstandings regarding the nature of the integrals and the definitions of Hermiticity and complex conjugation. The discussion reflects varying levels of familiarity with the topic among participants.

Mayhem
Messages
425
Reaction score
317
My QM textbook defines Hermiticity as $$\int f^*\hat{\Omega}g dx = \left \{ \int g^*\hat{\Omega}f dx \right\}^*$$ where f and g are any two wave functions, and * denotes the complex conjugate.

I am having a little trouble interpreting the complex conjugate of the RHS integral. Usually the complex conjugate of a function is defined as ## \psi^* = (f+gi)^* = f-gi ## (here f and g are not necessarily related to the above definition). Can I make a similar decomposition of the integral and is this even useful?
 
Physics news on Phys.org
Mayhem said:
My QM textbook defines Hermiticity as $$\int f^*\hat{\Omega}g dx = \left \{ \int g^*\hat{\Omega}f dx \right\}^*$$ where f and g are any two wave functions, and * denotes the complex conjugate.

I am having a little trouble interpreting the complex conjugate of the RHS integral. Usually the complex conjugate of a function is defined as ## \psi^* = (f+gi)^* = f-gi ## (here f and g are not necessarily related to the above definition). Can I make a similar decomposition of the integral and is this even useful?
Your textbook omits to show that those integrals are definite integrals and hence complex numbers, not functions of ##x##.
 
  • Like
Likes   Reactions: vanhees71
PeroK said:
Your textbook omits to show that those integrals are definite integrals and hence complex numbers, not functions of ##x##.
Ah, that makes sense. Actually they do show an example where there are limits. So this means that it is necessary to evaluate the integral in order to extract an explicit form of the complex conjugate?
 
Mayhem said:
Ah, that makes sense. Actually they do show an example where there are limits. So this means that it is necessary to evaluate the integral in order to extract an explicit form of the complex conjugate?
You don't necessarily have to evaluate the integral.
 
Mayhem said:
My QM textbook defines Hermiticity as $$\int f^*\hat{\Omega}g dx = \left \{ \int g^*\hat{\Omega}f dx \right\}^*$$ where f and g are any two wave functions, and * denotes the complex conjugate.

I am having a little trouble interpreting the complex conjugate of the RHS integral. Usually the complex conjugate of a function is defined as ## \psi^* = (f+gi)^* = f-gi ## (here f and g are not necessarily related to the above definition). Can I make a similar decomposition of the integral and is this even useful?
You have an inner product defined by a bilinear, self-adjoint operator ##\hat{\Omega}=\hat{\Omega}^*=\overline{\hat{\Omega}}##
$$
\langle \overline{f}\, , \,g \rangle_\hat{\Omega}= \int f^*\hat{\Omega}g dx = \left \{ \int g^*\hat{\Omega}f dx \right\}^*=\overline{\langle \overline{g},f \rangle}_\hat{\Omega}
$$
 
Last edited:
fresh_42 said:
You have an inner product defined by a bilinear, self-adjoint operator ##\hat{\Omega}=\hat{\Omega}^*=\overline{\hat{\Omega}}##
$$
\langle \overline{f}\, , \,g \rangle_\hat{\Omega}= \int f^*\hat{\Omega}g dx = \left \{ \int g^*\hat{\Omega}f dx \right\}^*=\overline{\langle \overline{g},f \rangle}_\hat{\Omega}
$$
That doesn't look right. That's the definition of Hermicity of ##\Omega##, using the standard inner product on the space of square-integrable functions.

That's what the OP gets for posting QM in a maths forum!
 
  • Haha
Likes   Reactions: vanhees71
Let me guess: The textbook is Griffiths...?
 
  • Sad
Likes   Reactions: PeroK
vanhees71 said:
Let me guess: The textbook is Griffiths...?
No, Atkin's Physical Chemistry. QM is interesting though. Might take a graduate level elective if I pass this course with a decent grade.
 
  • Like
Likes   Reactions: vanhees71 and PeroK

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K