MHB What is the correct slant asymptote for this function and why is it significant?

  • Thread starter Thread starter m3dicat3d
  • Start date Start date
  • Tags Tags
    Asymptote
m3dicat3d
Messages
19
Reaction score
0
View attachment 819Why is the slant asymptote pictured here correct for this function? I was under the impression an asymptote was never crossed by the function. I get that the dividend gives the equation for the asymptote for a non zero remainder, but seeing this graphically is a bit confusing. Thanks! (EDIT: NVM, I just answered my own question:p) Thanks anyways though!
 

Attachments

  • slant asymtope.JPG
    slant asymtope.JPG
    16.5 KB · Views: 103
Last edited:
Mathematics news on Phys.org
If you long divide, you'll see that [math]\displaystyle \frac{-6x^3 + 4x^2 - 1}{2x^2 + 1} \equiv -3x + 2 + \frac{x}{2x^2 + 1} = -3x + 2 + \frac{1}{2x + \frac{1}{x}} [/math].

You can see that the denominator easily overpowers the numerator, and so gets closer to 0, which means the entire function eventually works like [math]\displaystyle -3x + 2[/math]. However, since there is always that tiny bit added, it never actually will be [math]\displaystyle -3x + 2[/math], and so [math]\displaystyle y = -3x + 2[/math] must be an asymptote :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top