What is the difference in writing the range of values of a function

Click For Summary

Discussion Overview

The discussion revolves around the differences in writing the range of values for which a function is increasing or decreasing, specifically focusing on the implications of using symbols such as $'<'$, $'≤'$, $'>'$, and $'≥'$. Participants explore how these symbols affect the interpretation of intervals in the context of continuous functions and specific examples.

Discussion Character

  • Conceptual clarification, Debate/contested, Mathematical reasoning

Main Points Raised

  • Some participants note that the symbols $'<'$ and $'≤'$ can indicate whether endpoints are included in the range of values for a function.
  • One participant suggests that both forms of notation are acceptable and that the distinction is relevant only if the function is not defined or has a discontinuity at the endpoints.
  • Another participant emphasizes that when writing an exact range, such as for the function $y=\left(x-x\right)^2-5$, the use of $'≤'$ is appropriate to indicate inclusion of endpoints.
  • Conversely, when discussing ranges without specific numerical limits, participants argue that $'<'$ should be used to exclude endpoints, as in the case of the interval $-1
  • There is a mention of ambiguity in the phrase "from $-5$ to $3$," leading to differing interpretations about whether to include the endpoints.

Areas of Agreement / Disagreement

Participants express differing views on the implications of using $'<'$ versus $'≤'$ in various contexts, indicating that there is no consensus on a definitive rule for all cases.

Contextual Notes

The discussion highlights the importance of context in determining whether endpoints should be included, particularly in relation to the continuity of the function and the specific phrasing of the problem.

mathlearn
Messages
331
Reaction score
0
I was just wondering in writing the range of values for which the function is increasing or decreasing in in a positive or a negative way ,

The difference caused by the use of the symbols $'>'$ and $'≥'$ or in $'<'$ or $'≤ '$​

For example If we consider the graph of the function,

$y=\left(x-x\right)^2-5$ & asked to write down the interval of values of $x$ on which the function increases from $-5$ to $3$

The range can be written as & note here that $'≤'$ is used instead of $<$

$2≤ x≤ 4.8$

& taking another graph in the form of $y=2-x(x-4)-2$

write down the interval of $x$ in which the function is positive and increasing

$-1<x<1$

So what is the difference in the use of symbol $<$ & $≤$ in writing the range
 
Physics news on Phys.org
Re: What is the difference in writing the range of values of a funtion

mathlearn said:
I was just wondering in writing the range of values for which the function is increasing or decreasing in in a positive or a negative way ,

The difference caused by the use of the symbols $'>'$ and $'≥'$ or in $'<'$ or $'≤ '$​

For example If we consider the graph of the function,

$y=\left(x-x\right)^2-5$ & asked to write down the interval of values of $x$ on which the function increases from $-5$ to $3$

The range can be written as & note here that $'≤'$ is used instead of $<$

$2≤ x≤ 4.8$

& taking another graph in the form of $y=2-x(x-4)-2$

write down the interval of $x$ in which the function is positive and increasing

$-1<x<1$

So what is the difference in the use of symbol $<$ & $≤$ in writing the range

Hey mathlearn! ;)

Both forms are fine and usually mean the same thing.
The difference is whether we want to include the end points or not.
And that difference is only relevant if the function is not defined or makes a jump at an end point.
If it's already known that the function is well defined and continuous, as in your examples, that can't happen.
 
Re: What is the difference in writing the range of values of a funtion

Thank you very much ILS :)

I like Serena said:
Hey mathlearn! ;)

Both forms are fine and usually mean the same thing.
The difference is whether we want to include the end points or not.
And that difference is only relevant if the function is not defined or makes a jump at an end point.
If it's already known that the function is well defined and continuous, as in your examples, that can't happen.

Hey I like Serena :D,

So then when we are asked to write an exact range like in,

mathlearn said:
$y=\left(x-x\right)^2-5$ & asked to write down the interval of values of $x$ on which the function increases from $-5$ to $3$

The range can be written as & note here that $'≤'$ is used instead of $<$

$2≤ x≤ 4.8$

we must be using the $≤ $ symbol

or if we are asked to write the range of values of which the function is increasing or decreasing negatively or positively in which we aren't given a limit using numbers we use $<$, Like in

mathlearn said:
write down the interval of $x$ in which the function is positive and increasing

$-1<x<1$

So what is the difference in the use of symbol $<$ & $≤$ in writing the range

Many Thanks (Smile)
 
Re: What is the difference in writing the range of values of a funtion

mathlearn said:
So then when we are asked to write an exact range like in,

mathlearn said:
$y=\left(x-x\right)^2-5$ & asked to write down the interval of values of $x$ on which the function increases from $-5$ to $3$

The range can be written as & note here that $'≤'$ is used instead of $<$

$2≤ x≤ 4.8$

we must be using the $≤ $ symbol

The text "from $-5$ to $3$" is ambiguous to whether the end points are included, so we are free to pick either. ;)

or if we are asked to write the range of values of which the function is increasing or decreasing negatively or positively in which we aren't given a limit using numbers we use $<$, Like in

mathlearn said:
write down the interval of $x$ in which the function is positive and increasing

$-1<x<1$

So what is the difference in the use of symbol $<$ & $≤$ in writing the range

Many Thanks (Smile)

In this case we should certainly not include -1 or 1 in the range, since they are specifically excluded. (Nerd)
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K