- #1
nhrock3
- 415
- 0
there is
v1,..,vk,u,w vectors on space V
the group {v1,..,vk,u} is independant
and
[tex]Sp\{v1,..,vk\}\cap Sp\{u,w\}\neq\{0\}[/tex]
find the dimention of sp{v1..vk,u,w}
?
if {v1,..,vk,u} is independant then its span dimention is k+1
and span so {v1,..,vk} independat to and dim sp{v1,..,vk}=k
the dimention of sp{v1..vk,u,w} is
dim(sp{v1..vk,u,w})=dim(sp{v1..vk}and sp{u,w}})=dim(sp{v1..vk}+sp{u,w})=dim(sp{v1..vk})+dim(sp{u,w})-dim(sp{v1..vk} intersect sp{u,w}})
if v1..vk,u is independant then v1,..,vk is independant too so dim (sp{v1..vk})=k
now regardingthe other two members i don't know
v1,..,vk,u,w vectors on space V
the group {v1,..,vk,u} is independant
and
[tex]Sp\{v1,..,vk\}\cap Sp\{u,w\}\neq\{0\}[/tex]
find the dimention of sp{v1..vk,u,w}
?
if {v1,..,vk,u} is independant then its span dimention is k+1
and span so {v1,..,vk} independat to and dim sp{v1,..,vk}=k
the dimention of sp{v1..vk,u,w} is
dim(sp{v1..vk,u,w})=dim(sp{v1..vk}and sp{u,w}})=dim(sp{v1..vk}+sp{u,w})=dim(sp{v1..vk})+dim(sp{u,w})-dim(sp{v1..vk} intersect sp{u,w}})
if v1..vk,u is independant then v1,..,vk is independant too so dim (sp{v1..vk})=k
now regardingthe other two members i don't know