What is the equation for combining two vectors using the parallelogram rule?

  • Context: High School 
  • Thread starter Thread starter mireazma
  • Start date Start date
  • Tags Tags
    Parallelogram
Click For Summary
SUMMARY

The discussion centers on the application of the parallelogram rule for combining two vectors in a 2D game development context. The formula for calculating the resultant vector's magnitude is established as R = sqrt(V1² + V2² + 2*V1*V2*cos(α), where R represents the resultant vector, V1 and V2 are the magnitudes of the two vectors, and α is the angle between them. For determining the direction of the resultant vector, the inverse sine function (arcsin) is utilized to extract the angle β from the equation sin(β) = V2*sin(α)/R. Game development tools like Game Maker are recommended for implementing these calculations.

PREREQUISITES
  • Understanding of vector mathematics, specifically the parallelogram rule.
  • Familiarity with trigonometric functions, including sine and cosine.
  • Knowledge of inverse functions, particularly the arcsine function.
  • Basic experience with game development tools, such as Game Maker.
NEXT STEPS
  • Research the implementation of vector mathematics in Game Maker.
  • Learn about the properties of vector addition and subtraction in physics.
  • Explore advanced trigonometric functions and their applications in game physics.
  • Study the effects of vector angles on resultant forces in 2D environments.
USEFUL FOR

This discussion is beneficial for game developers, physics enthusiasts, and anyone involved in programming 2D games that require collision detection and vector manipulation.

mireazma
Messages
16
Reaction score
0
I tried at "Intro physics" and was warn that my post might be deleted if not stuck to a certain template. So, here I am.
I'm an outsider in physics, yet I'm trying to make a 2d game with collisions.
I know that I can "split" a vector into two and combine two into one by this rule; I need the equation(s) for it; I remember it's complicated… Please, if know, help me
 
Physics news on Phys.org
I think you may be talking about splitting a vector into its vertical and horizontal components. We know that adding vertical and horizontal vectors can make a vector pointing some other way, and we can reverse that process.

To split it basically draw a right angled triangle with the vector you want to split as the hypotenuse. labeling that V, and one of the other angles theta, we can see with simple trig the values of the other sides.
 
Thank you; it's hard to apply this in what I'm making, though; I basically want to know the value of a 2nd vector (v2) please take a look at my scheme, cause I got the feeling v1 not equals v2 (v2<v1).
So, how can I determine how much of the tank force is applied to the truck?
If v2 is a component of v1, as a result of splitting v1 by 2 directions, what would the other component be? I'm pretty confused

Thank you in advance.

edit:
I thought v2 was the acting component of v1 upon truck; where was I thinking?!
 

Attachments

Last edited:
The very formula of parallelogram vectors merge?

Ok, forget anything else!
Anywayz, I have 2 vectors; I know the directions and the values for both; what's the formula for finding the resulting merged vector direction and value? (the vectors aren't perpendicular)
I need an equation, something, cause the computer can't see a parallelogram; he sees things a little different :)
 
almost there

I found the formula for the value:

R=sqrt(V1²+V2²+2*V1*V2*cos(α))

As for the direction, I'm stuck at:

sin(β)=V2*sin(α)/R

I need β; how can I pull out β in this equation?
 
You need to use the arc sine function, which is the inverse of the sine function, just like the square is the inverse of square rooting, they reverse each others processes. You may want to look up arc sine in google.
 
Thanks a lot! After asiduous searching on the web, I realized that the soft I use to make the game has arcsin already implemented. Doh!
If you sometime feel like doing simple games, go try Game Maker; it's friendly. :)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
5K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
13K