- 14,608
- 7,218
There are two ways to define quantum statistics. One is in terms of particle exchange. The other is in terms of algebra of field operators. The former is a definition for QM, where the fundamental degrees are particles. The later is a definition for QFT, where the fundamental degrees are fields. The two definitions are closely related, but not fully equivalent.stevendaryl said:The argument I heard, which I didn't really understand, is that if you consider paths in configuration space, the path where two identical particles exchange places is continuously deformable to a path were one of the particles rotates through 360 degrees and nothing else happens. So somehow there must be a relationship between particle exchange and rotations. But the deformation requires at least 3 dimensions, so there is a 2-D loophole. Something like that.
The argument above is a valid argument in QM. But it is not a valid argument in QFT. QM and QFT are different theories. Even if they are not so different in the case of bosons and fermions, they are very different in the case of anyons. The standard spin-statistics theorem is a theorem about relativistic QFT, not a theorem about QM. We have a consistent QM theory of anyons in 2+1, but not a consistent local relativistic QFT of anyons in 2+1. The standard spin-statistics theorem and the anyon theory cannot be directly compared because they talk about different objects; one is talking about fields and the other about particles.
It seems that Baez (and apparently many others) failed to realize that two different ways of defining statistics cannot be directly compared. The fact that anyons as particles can live in 2+1 QM does not contradict the other fact that anyons as fields can not live in 2+1 local relativistic QFT.