What is the formula for permutations of multiple kinds in combinatorics?

12john
Messages
12
Reaction score
1
Thread moved from the technical forums to the schoolwork forums
My combinatorics professor has a MA, PhD from Princeton University. On our test, she asked

What's the explicit formula for the number of ##p## permutations of ##t## things with ##k## kinds, where ##n_1, n_2, n_3, \cdots , n_k## = the number of each kind of thing ?

I handwrote, but transcribed in Latex, my answer below.

To deduce the formula for all the unique permutations of length ##l## of ##\{n_1,n_2,...,n_k\}##, we must find all combinations ##C=\{c_1,c_2,...,c_k\}## where ##0 \leq c_k \leq n_k##, such that
##\sum_{i=1}^k c_i=l##.

What we need, is actually the product of the factorials of the elements of that combination:
##{\prod_{i=1}^k c_i!}##

Presuppose that the number of combinations is J. Then to answer your question, the number of permutations is
$$= \sum_{j=1}^J \frac{l!}{\prod_{i=1}^k c_i!}
= \sum_{c_1+c_2+...+c_k=l} \binom{l}{c_1,c_2, \cdots ,c_n},$$
as a closed form expression with a Multinomial Coefficient. *QED.*

How can I improve this? What else should I've written? Professor awarded me merely 50%. She wrote
Your answer is correct, but your solution is too snippy. You need to elaborate.
 
Last edited by a moderator:
Physics news on Phys.org
12john said:
I handwrote, but transcribed in Latex, my answer below.
I edited your LaTeX. At this site we use MathJax, which has to be delimited by either pairs of # characters (for inline TeX) or pairs of $ characters (standalone).
I also removed all the color stuff. We prefer that you use a minimum of extra color, bolding, italics, etc.
12john said:
How can I improve this? What else should I've written?
What she wrote was "You need to elaborate." The best explanation would come from your instructor.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top