MHB What is the geometric progression with 4 and 5 digit terms?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on finding the first ten terms of a geometric progression where the first six terms have four digits and the tenth term has five digits. The participants clarify that the terms must be integers and derive conditions for the first term and common ratio. The common ratio is determined to be between 1.291 and 1.584, leading to the conclusion that it must be rational, specifically 3/2. The only suitable first term that meets all criteria is 1024, resulting in the sequence: 1024, 1536, 2304, 3456, 5184, 7776, 11664, 17496, 26244, 39366.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $$a_1,\;a_2,\;a_3,\;\cdots\;, a_{10}$$ given that:

i) They are in geometric progression, in this order.
ii) $$a_1,\;a_2,\;a_3,\;a_4,\;a_5,\;a_6$$ have 4 digits and $$a_{10}$$ have 5 digits.
 
Mathematics news on Phys.org
Clearly the geometric term $r$ has to be greater than 1. Let $1000 \leq a_6 < 10000$. Then we have the following constraints on $r$:

1. $a_1 \geq 1000$, that is, $a_6 \cdot r^{-5} \geq 1000 ~ ~ ~ \implies ~ ~ ~ r \leq \sqrt[5]{\frac{a_6}{1000}}$

2. $a_7 \geq 10000$, which implies $a_6 \cdot r > 10000 ~ ~ ~ \implies ~ ~ ~ r \geq \frac{10000}{a_6}$

3. $a_{10} < 10000$, so $a_6 \cdot r^4 < 100000 ~ ~ ~ \implies ~ ~ ~ r < \sqrt[4]{\frac{100000}{a_6}}$

So, given $1000 \leq a_6 < 10000$, any $r$ satisfying the condition below is a solution to the problem.
$$\frac{10000}{a_6} < r < \min{\left ( \sqrt[5]{\frac{a_6}{1000}}, \sqrt[4]{\frac{100000}{a_6}} \right )}$$
Note that this interval may be empty. I haven't done the calculations but it is obvious that for $a_6$ close to $1000$ there is no solution, and so on. Also the inequalities may be a bit wrong with respect to $\leq$ and $<$ because I'm lazy but I trust it will not be an issue.

Let's try it with $a_6 = 9183$ at random. Then we have:
$$\frac{10000}{a_6} \approx 1.09$$
$$\sqrt[5]{\frac{a_6}{1000}} \approx 1.56$$
$$\sqrt[4]{\frac{100000}{a_6}} \approx 1.82$$
Therefore our condition on $r$ is approximately:
$$1.09 < r < 1.56$$
Arbitrarily, let's pick $r = 1.2$. Then:
$$a_1 = a_6 \cdot r^{-5} \approx 3690$$
And the entire sequence follows, rounded up to integers:
$$a = \{ 3690, 4429, 5314, 6377, 7653, 9183, 11020, 13224, 15868, 19042 \}$$
$$\blacksquare$$

This approach assumes that $a_7$ has 5 digits, this wasn't explicitly specified in the problem and so this method does not capture all solutions (it does capture all solutions under the assumption that $a_7$ has 5 digits, though, as far as I can tell, and should be able to be tweaked to assume that $a_7$ has 4 digits but $a_8$ has 5 and so on).​
 
Hi Bacterius,

Thanks for participating but I believe the problem is set for not allowing us to round the answer to the nearest integer.:o

While I managed to solve it by generating a sequence (that consists of only integers value of the first ten terms) that satisfied the aforementioned conditions, I'm not certain if that is the only pair of answer to this problem.
 
anemone said:
Hi Bacterius,

Thanks for participating but I believe the problem is set for not allowing us to round the answer to the nearest integer.:o

While I managed to solve it by generating a sequence (that consists of only integers value of the first ten terms) that satisfied the aforementioned conditions, I'm not certain if that is the only pair of answer to this problem.

Oh, right, I am stupid, haha. I got confused between digits and integers. Sorry. Well at least my solution works for reals with thresholds. I take it the geometric term is an integer too, then. Anyway, back to the drawing board (Tongueout)
 
[sp]Bacterius's method looks like a good starting point. If the first term is $a$ and the common ratio is $r$, then we have the conditions $a\geqslant 1000$, $ar^5<10\,000$, $ar^9\geqslant 10\,000$. That tells us that $r^5<10$ and $r^9>10$, from which $10^{1/9}<r<10^{1/5}$, or $1.291<r<1.584$.

Next, if the numbers $ar^k\ (0\leqslant k\leqslant 9)$ are all integers, then $r$ must be rational, say $r=p/q$ with $p,q$ co-prime integers. If $ar^9 = \dfrac{ap^9}{q^9}$ is to be an integer then $a$ must be a multiple of $q^9$. But that forces $q$ to be $2$ (because $3^9 = 19683$, which already has five digits). Therefore $r = 3/2$ and $a$ must be a multiple of $2^9 = 512$. Since $a$ has four digits it must be at least $2*512 = 1024$. The next possibility would be $a=3*512=1536$. But then $ar^5 = 11664$, which is too big, since we are told that $a_6$ has four digits.

Therefore the only possibility is that $a=1024$ and $b=3/2$. The sequence is then
1024
1536
2304
3456
5184
7776
11664
17496
26244
39366​
[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
3
Views
3K
Back
Top