MHB What is the Implication of a Formula in Propositional Calculus?

  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Calculus
solakis1
Messages
407
Reaction score
0
Given : $$p\wedge\neg (q\vee r)$$ then prove whether this formula implies:!) $$(p\wedge\neg q)\vee (p\wedge\neg r)$$

OR

2) $$(p\wedge\neg q)\wedge (p\wedge\neg r)$$
 
Mathematics news on Phys.org
$$p\wedge\neg (q\vee r)$$
=$$p\wedge(\neg q\wedge\neg r)$$
=$$(p\wedge\neg q)\wedge (p\wedge\neg r)$$

So, it implies 2)
 
Monoxdifly said:
$$p\wedge\neg (q\vee r)$$
=$$p\wedge(\neg q\wedge\neg r)$$
=$$(p\wedge\neg q)\wedge (p\wedge\neg r)$$

So, it implies 2)

Sorry,but i am trying to find out how you got $$(p\wedge\neg q)\wedge (p\wedge\neg r)$$ from

$$p\wedge(\neg q\wedge\neg r)$$
 
solakis said:
Sorry,but i am trying to find out how you got $$(p\wedge\neg q)\wedge (p\wedge\neg r)$$ from

$$p\wedge(\neg q\wedge\neg r)$$
And ($\wedge$) is distributive over itself since it is associative, commutative and idempotent: https://proofwiki.org/wiki/Associative_Commutative_Idempotent_Operation_is_Distributive_over_Itself.
 
Olinguito said:
And ($\wedge$) is distributive over itself since it is associative, commutative and idempotent: https://proofwiki.org/wiki/Associative_Commutative_Idempotent_Operation_is_Distributive_over_Itself.
If the system is associative ,then

(A*B)*C =A*(B*C)...(1) ,Note i use * instead the circle,where A,B,C are elements of the structure

And if we put :

A=a
B=b
C=(a*c), then by using (1) we have

(a*b)*(a*c)= a*[b*(a*c)]

Now where wiki gets : (a*b)*(a*c)=a*(b*a)*c ??
 
solakis said:
(a*b)*(a*c)= a*[b*(a*c)]

Now where wiki gets : (a*b)*(a*c)=a*(b*a)*c ??
Aren’t the expressions in red equal?
 
Olinguito said:
Aren’t the expressions in red equal?


By using associativity you can get them equal.

But i am asking ,how wiki gets, a*(b*a)*c from (a*b)*(a*c) by ‹using associativity

Parenthesis are very important in this kind of proof otherwise a lot of wrong proofs can be given

Look at the following proof:

(a*b)*(a*c)= (a*a)*b*c=............By commutativity

=a*b*c.................By indepondency
 
solakis said:
By using associativity you can get them equal.

But i am asking ,how wiki gets, a*(b*a)*c from (a*b)*(a*c) by ‹using associativity

Parenthesis are very important in this kind of proof otherwise a lot of wrong proofs can be given

Look at the following proof:

(a*b)*(a*c)= (a*a)*b*c=............By commutativity

=a*b*c.................By indepondency

If we do not have associativity, parentheses are indeed very important.
If we do have associativity, parentheses are redundant, and often left out.
In this case we have associativity, don't we?
 
I like Serena said:
If we do not have associativity, parentheses are indeed very important.
If we do have associativity, parentheses are redundant, and often left out.
In this case we have associativity, don't we?

Can you give an example of a system with a binary opperation where by using associativity you can prove that parenthesis are redundant
 
  • #10
solakis said:
Can you give an example of a system with a binary opperation where by using associativity you can prove that parenthesis are redundant
Use induction with a general expression like $a_1\circ a_2\circ\cdots\circ a_n$.

Obviously parentheses are redundant when $n=1$ or $n=2$. By the definition of associativity, they are redundant for $n=3$.

Suppose they are redundant for some $n$ and all $r$ with $3\leqslant r\leqslant n$. Consider the expression $a_1\circ\cdots\circ a_n\circ a_{n+1}$. You can have either
$$\left(a_1\circ\cdots\circ a_n\right)\circ a_{n+1}$$
or
$$\left(a_1\circ\cdots\circ a_i\right)\circ\left(a_{i+1}\circ\cdots\circ a_n\circ a_{n+1}\right)$$
(where $1\leqslant i\leqslant n-1$). In either case, the inductive hypothesis applies to all the expressions within parentheses; hence, by induction, parentheses are redundant.

So when you have an associative operation, it doesn’t matter how long the string is: you get the same answer no matter how you bracket it up.
 
Last edited:
  • #11
Monoxdifly said:
$$p\wedge\neg (q\vee r)$$
=$$p\wedge(\neg q\wedge\neg r)$$
=$$(p\wedge\neg q)\wedge (p\wedge\neg r)$$

So, it implies 2)
The following truth table indicates that it implies both (1) and (2)[TABLE="class: truth"]
[TR]
[TH="align: center"]p[/TH]
[TH="align: center"]q[/TH]
[TH="align: center"]r[/TH]
[TH="class: dv, align: center"][/TH]
[TH="align: center"][/TH]
[TH="align: center"][/TH]
[TH="align: center"]([/TH]
[TH="align: center"]p[/TH]
[TH="align: center"]&[/TH]
[TH="align: center"]~[/TH]
[TH="align: center"]([/TH]
[TH="align: center"]q[/TH]
[TH="align: center"]∨[/TH]
[TH="align: center"]r[/TH]
[TH="align: center"])[/TH]
[TH="align: center"])[/TH]
[TH="align: center"]→[/TH]
[TH="align: center"]([/TH]
[TH="align: center"]([/TH]
[TH="align: center"]p[/TH]
[TH="align: center"]&[/TH]
[TH="align: center"]~[/TH]
[TH="align: center"]q[/TH]
[TH="align: center"])[/TH]
[TH="align: center"]∨[/TH]
[TH="align: center"]([/TH]
[TH="align: center"]p[/TH]
[TH="align: center"]&[/TH]
[TH="align: center"]~[/TH]
[TH="align: center"]r[/TH]
[TH="align: center"])[/TH]
[TH="align: center"])[/TH]
[TH="align: center"][/TH]
[/TR]
[TR]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD]T[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR]
[TD]T[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR]
[TD]T[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR]
[TD]F[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD]F[/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR]
[TD]F[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD]F[/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[TR]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD="class: dv"][/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD="class: mc"]T[/TD]
[TD][/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD]F[/TD]
[TD][/TD]
[TD]F[/TD]
[TD][/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]F[/TD]
[TD]T[/TD]
[TD][/TD]
[TD][/TD]
[TD][/TD]
[/TR]
[/TABLE]
 

Similar threads

Back
Top