- #1

- 7

- 0

(P→Q) [itex]\wedge[/itex] (Q→P)

([itex]\neg[/itex]P[itex]\vee[/itex]Q) [itex]\wedge[/itex] ([itex]\neg[/itex]Q[itex]\vee[/itex]P)

[[itex]\neg[/itex](P[itex]\wedge[/itex][itex]\neg[/itex]Q)[itex]\wedge[/itex][itex]\neg[/itex](Q[itex]\wedge[/itex][itex]\neg[/itex]P)]

[itex]\neg[/itex][(P[itex]\wedge[/itex][itex]\neg[/itex]Q)[itex]\vee[/itex](Q[itex]\wedge[/itex][itex]\neg[/itex]P)]

I don't know which law to use from this point on to prove the equivalence.