show that P [itex]\leftrightarrow[/itex] Q is equal to (P[itex]\wedge[/itex]Q) [itex]\vee[/itex] ([itex]\neg[/itex]P [itex]\wedge[/itex][itex]\neg[/itex]Q)(adsbygoogle = window.adsbygoogle || []).push({});

(P→Q) [itex]\wedge[/itex] (Q→P)

([itex]\neg[/itex]P[itex]\vee[/itex]Q) [itex]\wedge[/itex] ([itex]\neg[/itex]Q[itex]\vee[/itex]P)

[[itex]\neg[/itex](P[itex]\wedge[/itex][itex]\neg[/itex]Q)[itex]\wedge[/itex][itex]\neg[/itex](Q[itex]\wedge[/itex][itex]\neg[/itex]P)]

[itex]\neg[/itex][(P[itex]\wedge[/itex][itex]\neg[/itex]Q)[itex]\vee[/itex](Q[itex]\wedge[/itex][itex]\neg[/itex]P)]

I don't know which law to use from this point on to prove the equivalence.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Help with proving Biconditional equivalence

Loading...

Similar Threads for Help proving Biconditional |
---|

A Help with this problem of stationary distributions |

I Help with sample size to measure Form Error of a round metal part |

**Physics Forums | Science Articles, Homework Help, Discussion**