What is the integral of f(x) and q(x) in the Euler Lagrange equations?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Euler Lagrange
Click For Summary

Discussion Overview

The discussion revolves around the integral of functions \(f(x)\) and \(q(x)\) within the context of the Euler-Lagrange (EL) equations, specifically applied to a given functional \(F\). Participants explore the implications of these integrals in solving a related integro-differential equation, addressing both theoretical and practical aspects of the problem.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the functional \(F = p(x)y^{'2}-q(x)y^2+2f(x)y\) and questions the integrals of \(f(x)\) and \(q(x)\).
  • Another participant suggests that the original question regarding the integrals is unclear and expresses concern about the treatment of \(y\) in the integrals.
  • Further discussion includes the transformation of the problem into a linear differential equation, with one participant proposing to solve \(f(x) - q(x)y - p'(x)y' - p(x)y''= 0\).
  • One participant mentions the integrability of \(F\) over a specified interval and questions the boundary conditions for \(y\).
  • A later reply introduces a solution using variation of parameters, detailing the general solution structure and cases based on the discriminant of the characteristic equation.
  • Another participant challenges the validity of the proposed solution to the differential equation, suggesting that the methods used are only applicable under certain conditions.

Areas of Agreement / Disagreement

Participants express differing views on the clarity of the original question, the treatment of integrals, and the validity of proposed solutions to the differential equation. No consensus is reached regarding the best approach to the problem.

Contextual Notes

There are unresolved assumptions regarding the nature of the functions \(f(x)\) and \(q(x)\), as well as the conditions under which the differential equation is solved. The discussion reflects a range of interpretations and methods without definitive conclusions.

Dustinsfl
Messages
2,217
Reaction score
5
Given this \(F = p(x)y^{'2}-q(x)y^2+2f(x)y\). What would be the integral of \(f(x)\) and \(q(x)\)?
\begin{align*}
f(x) - q(x)y - \frac{d}{dx}\left[p(x)y'\right] &= 0\\
\frac{d}{dx}\left[p(x)y'\right] &= f(x) - q(x)y\\
y'p(x) &= \int f(x)dx - y\int q(x)dx
\end{align*}
 
Last edited:
Physics news on Phys.org
Assuming you meant to apply the EL equations to $F$, you've started out correctly. I'm not sure you can pull $y$ out of the last integral, though. If $y=y(x)$, then I think you have to have
$$y'p(x) = \int f(x) \,dx - \int y \, q(x) \,dx.$$
The question, "What would be the integral of $f(x)$ and $q(x)$?" is a bit unclear. You have sort-of found it, I suppose, although the $y$ under the $q$ integral is a bit troubling. Is that the exact wording of the original question?
 
Ackbach said:
Assuming you meant to apply the EL equations to $F$, you've started out correctly. I'm not sure you can pull $y$ out of the last integral, though. If $y=y(x)$, then I think you have to have
$$y'p(x) = \int f(x) \,dx - \int y \, q(x) \,dx.$$
The question, "What would be the integral of $f(x)$ and $q(x)$?" is a bit unclear. You have sort-of found it, I suppose, although the $y$ under the $q$ integral is a bit troubling. Is that the exact wording of the original question?
How can I continue to solve the problem is the real question since I have this integrals. I suppose, for f, I could say \int f = F but then I still have the issue of the other integral of yq(x).
 
Yes, you have an integro-differential equation for $y$. Not so nice. I might actually peal back your integral and try to solve
$$f(x) - q(x)y - p'(x)y' -p(x)y''= 0,$$
or
$$p(x)y''+p'(x)y'+q(x)y=f(x).$$
It's at least linear in $y$. The homogeneous equation, if I'm not mistaken, is Sturm-Liouville. That might help you some.
 
This may be helpful then. I know F is integrable on from a to b.
$$
\int_a^b Fdx
$$
So could one say then $y(a) = y_1$ and $y(b) = y_2$?
 
If we solve that DE, here is what I came up with using variation of parameters
\begin{align*}
y'' + \frac{p'}{p}y' + \frac{q}{p}y &= \frac{f}{p}\\
y'' + Ay' + By &= C
\end{align*}
Then we have \(m^2 + Am + B = 0\) where \(m = \frac{-A\pm\sqrt{A^2-4B}}{2}\).
Then we have 3 cases:
If \(A^2-4B = 0\), then
$$
y_c = c_1\exp\left[-\frac{A}{2}x\right] + c_2x\exp\left[-\frac{A}{2}x\right]
$$
Then the Wronskian is
$$
W = \exp(-Ax),
$$
\(u_1 = \frac{2C}{A^2}\exp\left[\frac{A}{2}x\right](2-Ax)\), and \(u_2 = \frac{2C}{A}\exp\left[\frac{A}{2}x\right]\).
$$
y = c_1\exp\left[-\frac{A}{2}x\right] + c_2x\exp\left[-\frac{A}{2}x\right] + \frac{2C}{A^2}\exp\left[\frac{A}{2}x\right](2-Ax) + \frac{2C}{A}\exp\left[\frac{A}{2}x\right]
$$

If \(A^2-4B < 0\), then
$$
y_c = \exp\left[-\frac{A}{2}x\right]\left(c_1\cos\left(-\frac{\sqrt{A^2-4B}}{2}x\right) + c_2\sin\left(-\frac{\sqrt{A^2-4B}}{2}x\right)\right)
$$
Repeat first case here:

If \(A^2-4B > 0\), then
$$
y_c = c_1\exp\left[\frac{-A+\sqrt{A^2-4B}}{2}\right] + c_2\exp\left[\frac{-A-\sqrt{A^2-4B}}{2}\right]
$$
Repeat first case here:


Maybe I misunderstood the original question though since this is rather intensive.

It original said:
Obtain the E-L eqs associated with extremizing \(\int_a^bFdx\).
 
I'm afraid your solution to the DE is not valid. The guess-and-check methods associated with the exponential only work with constant coefficients.

Given your problem statement, I think you could stop here:
$$p(x)y''+p'(x)y'+q(x)y=f(x).$$
This DE is the result of applying the EL equation to $F$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K