What is the issue with calculating the gauge pressure of object B?

Click For Summary
The discussion centers on calculating the gauge pressure of object B submerged in a liquid with a specific gravity of 0.877, given that object A has a gauge pressure of 3 atm. The key issue arises from using the incorrect gravitational constant of 9.8 m/s² instead of the provided 9.1 m/s² in the calculations. It is clarified that gauge pressure is determined by the fluid's density, not the submerged object's density, leading to the conclusion that both objects experience the same gauge pressure. However, the depth of 1 meter in a less dense fluid cannot generate a gauge pressure of 3 atm, indicating a misunderstanding of the pressure readings. The discussion emphasizes the importance of using the correct gravitational constant and understanding the relationship between fluid density and gauge pressure.
ppppparker
Messages
18
Reaction score
4

Homework Statement



objects A and b are submerged at a depth of 1m in a liquid with a specific gravity of 0.877. Given that the density of object B is one third that of Object A and that the gauge pressure of object A is 3atm, what is the gauge pressure of object B?
assume atmospheric pressure is 1atm and g = 9.1m/s/s

Homework Equations


P_gauge = P_0 + (rho)gz - P_atm

The Attempt at a Solution


Because this is 2 objects submerged in one liquid I am assuming that absolute pressure, P_0 = ambient pressure, P_atm.
So equation is just P_gauge = (rho)gh
And gauge pressure depends on density of fluid not the object submerged, so they will have same gauge pressure.
Also that S.G. = rho of fluid over rho of water, so density of fluid = .877(1000) = 877kg/m^3

But I don't understand why the calculation doesn't work:

P_gauge = (rho)gh

(877kg/m^3) (9.8m/s/s)(1m) should = 3atm ?

any help is really appreciated t..thanks
 
Physics news on Phys.org
ppppparker said:

Homework Statement



objects A and b are submerged at a depth of 1m in a liquid with a specific gravity of 0.877. Given that the density of object B is one third that of Object A and that the gauge pressure of object A is 3atm, what is the gauge pressure of object B?
assume atmospheric pressure is 1atm and g = 9.1m/s/s

Homework Equations


P_gauge = P_0 + (rho)gz - P_atm

The Attempt at a Solution


Because this is 2 objects submerged in one liquid I am assuming that absolute pressure, P_0 = ambient pressure, P_atm.
So equation is just P_gauge = (rho)gh
And gauge pressure depends on density of fluid not the object submerged, so they will have same gauge pressure.
Also that S.G. = rho of fluid over rho of water, so density of fluid = .877(1000) = 877kg/m^3

But I don't understand why the calculation doesn't work:

P_gauge = (rho)gh

(877kg/m^3) (9.8m/s/s)(1m) should = 3atm ?

any help is really appreciated t..thanks
Couple things here:
1. g was given as 9.1 m/s2 in the problem statement. Why did you use 9.8 m/s2? Is one a typo?

2. The pressure differential due to the fluid depth is ΔP = ρ ⋅ g ⋅ Δh.

3. A gauge pressure reading is set it so that 1 atm. abs. = 0 atm. gauge. A depth of 1 meter of fluid which is less dense than water is clearly an insufficient depth to provide 2 atm. of pressure difference. What can you conclude about the gauge reading for object A?
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 5 ·
Replies
5
Views
9K
Replies
10
Views
11K