MHB What is the length of a curve defined by a logarithmic function?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Curve Length
Click For Summary
The discussion focuses on calculating the length of the curve defined by the logarithmic function f(x) = ln(sin(x)) over the interval [π/6, π/2]. The derivative f'(x) is found to be cot(x), leading to the integral for the length L being expressed as L = ∫(π/6 to π/2) √(1 + cot²(x)) dx. The integral simplifies to L = ∫(π/6 to π/2) csc(x) dx, which can be evaluated using various techniques including substitution and partial fractions. Ultimately, the length of the curve is determined to be L = ln(√3 + 2).
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$

ok I used W|A to get the indefinit Integral but didn't know the steps
 
Physics news on Phys.org
karush said:
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$

ok I used W|A to get the indefinit Integral but didn't know the steps

$\displaystyle L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{\csc^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \cdot \dfrac{\csc{x}+\cot{x}}{\csc{x}+\cot{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \dfrac{\csc^2{x}+\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

$\displaystyle L = -\int_{\pi/6}^{\pi/2} \dfrac{-\csc^2{x}-\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

note the integrand has the form $\dfrac{u'}{u}$ ...
 
skeeter said:
$\displaystyle L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{\csc^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \cdot \dfrac{\csc{x}+\cot{x}}{\csc{x}+\cot{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \dfrac{\csc^2{x}+\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

$\displaystyle L = -\int_{\pi/6}^{\pi/2} \dfrac{-\csc^2{x}-\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

note the integrand has the form $\dfrac{u'}{u}$ ...

A slightly easier integral evaluation:

$\displaystyle \begin{align*} L &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\csc{(x)}\,\mathrm{d}x} \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{1}{\sin{(x)}}\,\mathrm{d}x } \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{\sin{(x)}}{\sin^2{(x)}}\,\mathrm{d}x } \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{-\sin{(x)}}{\cos^2{(x)} - 1} \,\mathrm{d}x } \\ &= \int_{\frac{\sqrt{3}}{2}}^{0}{ \frac{1}{u^2 - 1}\,\mathrm{d}u } \textrm{ where } u = \cos{(x)} \implies \mathrm{d}u = -\sin{(x)}\,\mathrm{d}x \end{align*}$

which can now be solved with Partial Fractions.
 
always learn cool tricks here at MHB:cool:
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K