What is the length of a curve defined by a logarithmic function?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Curve Length
Click For Summary

Discussion Overview

The thread discusses the length of a curve defined by the logarithmic function \( f(x) = \ln(\sin{x}) \) over the interval \( \frac{\pi}{6} \le x \le \frac{\pi}{2} \). Participants explore various methods for calculating the arc length, including integral evaluations and transformations.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents the formula for arc length and calculates it using \( L = \int_{\pi/6}^{\pi/2} \sqrt{1 - (\cot{x})^2} \,dx \), arriving at \( L = \ln{\sqrt{3}+2} \).
  • Another participant reiterates the same steps and provides a detailed breakdown of the integral, including transformations to \( \csc{x} \) and further manipulations of the integrand.
  • A third participant suggests a slightly easier method for evaluating the integral, proposing a substitution involving \( u = \cos{(x)} \) and discussing the use of partial fractions.
  • Some participants express appreciation for the techniques shared in the discussion.

Areas of Agreement / Disagreement

There is no consensus on a single method for calculating the arc length, as multiple approaches are presented and discussed. Participants explore different techniques without resolving which is the most effective.

Contextual Notes

Participants do not fully resolve the mathematical steps involved in the integral evaluations, and there are varying assumptions regarding the transformations used in the calculations.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$

ok I used W|A to get the indefinit Integral but didn't know the steps
 
Physics news on Phys.org
karush said:
$\begin{align*}\displaystyle
f(x)&=\ln(\sin{x})\\
\frac{\pi}{6}& \le x \le \frac{\pi}{2}\\
\end{align*}$
$\begin{align*}\displaystyle
f^\prime(x)&=\cot{x}
\end{align*}$
so
$\begin{align*}\displaystyle
L&=\int_{\pi/6}^{\pi/2} \sqrt{1-
(\cot{x})^2} \,dx \\
\therefore L&=\Biggr|-\ln(|\csc(x)+\cot(x)|)\Biggr|_{\pi/6}^{\pi/2}\\
&=\ln{\sqrt(3)+2}
\end{align*}$

ok I used W|A to get the indefinit Integral but didn't know the steps

$\displaystyle L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{\csc^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \cdot \dfrac{\csc{x}+\cot{x}}{\csc{x}+\cot{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \dfrac{\csc^2{x}+\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

$\displaystyle L = -\int_{\pi/6}^{\pi/2} \dfrac{-\csc^2{x}-\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

note the integrand has the form $\dfrac{u'}{u}$ ...
 
skeeter said:
$\displaystyle L = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{1 + \cot^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \sqrt{\csc^2{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \csc{x} \cdot \dfrac{\csc{x}+\cot{x}}{\csc{x}+\cot{x}} \, dx$

$\displaystyle L = \int_{\pi/6}^{\pi/2} \dfrac{\csc^2{x}+\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

$\displaystyle L = -\int_{\pi/6}^{\pi/2} \dfrac{-\csc^2{x}-\csc{x}\cot{x}}{\cot{x}+\csc{x}} \, dx$

note the integrand has the form $\dfrac{u'}{u}$ ...

A slightly easier integral evaluation:

$\displaystyle \begin{align*} L &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\csc{(x)}\,\mathrm{d}x} \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{1}{\sin{(x)}}\,\mathrm{d}x } \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{\sin{(x)}}{\sin^2{(x)}}\,\mathrm{d}x } \\ &= \int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{ \frac{-\sin{(x)}}{\cos^2{(x)} - 1} \,\mathrm{d}x } \\ &= \int_{\frac{\sqrt{3}}{2}}^{0}{ \frac{1}{u^2 - 1}\,\mathrm{d}u } \textrm{ where } u = \cos{(x)} \implies \mathrm{d}u = -\sin{(x)}\,\mathrm{d}x \end{align*}$

which can now be solved with Partial Fractions.
 
always learn cool tricks here at MHB:cool:
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K