MHB What is the limit of the sine function as x approaches 1?

Click For Summary
The limit of sin(x-1) / (x-1) as x approaches 1 can be evaluated by substituting x-1 with y, leading to the limit of sin(y)/y as y approaches 0. This limit is known to equal 1, which can be confirmed using L'Hôpital's rule or geometric definitions of trigonometric functions. Some discussions highlight the necessity of understanding the derivative of sin(x) to apply L'Hôpital's rule correctly. Additionally, a geometric approach shows that sin(x)/x is bounded by 1 as x approaches 0, reinforcing that the limit is indeed 1. Thus, the limit of sin(x-1) / (x-1) as x approaches 1 is confirmed to be 1.
Yankel
Messages
390
Reaction score
0
Hello all,

I am looking for the limit of:

sin(x-1) / (x-1)

where x approaches 1. How do I do that ? Thanks !
 
Physics news on Phys.org
Yankel said:
Hello all,

I am looking for the limit of:

sin(x-1) / (x-1)

where x approaches 1. How do I do that ? Thanks !

We set $x-1=y$.
When $x \to 1$, $y \to 0$.

So, we have the limit:

$$\lim_{y \to 0} \frac{\sin y}{y}$$

and it is known that it is equal to $1$.

You can easily verify it, using L'Hôpital's rule..
 
Another way, $$\lim_{t\to 0}\frac{\sin t}{t}=\lim_{t\to 0}\frac{t+o(t)}{t}=\lim_{t\to 0}\left(1+\frac{o(t)}{t}\right)=1+0=1$$ $$\underbrace{\Rightarrow}_{t=x-1} \lim_{x\to 1}\frac{\sin (x-1)}{x-1}=1$$
 
evinda said:
We set $x-1=y$.
When $x \to 1$, $y \to 0$.

So, we have the limit:

$$\lim_{y \to 0} \frac{\sin y}{y}$$

and it is known that it is equal to $1$.

You can easily verify it, using L'Hôpital's rule...

No you most certainly can not! To use L'Hospital's Rule, you must be able to find the derivative of sin(x), so let's try it...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left[ \sin{(x)} \right] &= \lim_{h \to 0} \frac{\sin{ \left( x + h \right) } - \sin{(x)}}{h} \\ &= \lim_{h \to 0} \frac{\sin{(x)}\cos{(h)} + \cos{(x)}\sin{(h)} - \sin{(x)}}{h} \\ &= \sin{(x)}\lim_{h \to 0} \frac{\cos{(h)} - 1}{h} + \cos{(x)} \lim_{h \to 0} \frac{\sin{(h)}}{h} \end{align*}$

So to find the derivative of sin(x), we need to evaluate the very limit we are trying to find!

To find this limit, you instead have to use the geometric definition of the trigonometric functions on the unit circle.

View attachment 3663

Notice that the area of the sector is a little more than the area of the smaller triangle and a little less than the area of the bigger triangle, so when the angle x is measured in radians we have

$\displaystyle \begin{align*} \frac{\sin{(x)}\cos{(x)}}{2} \leq \frac{x}{2} &\leq \frac{\tan{(x)}}{2} \\ \frac{\sin{(x)}\cos{(x)}}{2} \leq \frac{x}{2} &\leq \frac{\sin{(x)}}{2\cos{(x)}} \\ \sin{(x)} \cos{(x)} \leq x &\leq \frac{\sin{(x)}}{\cos{(x)}}\\ \cos{(x)} \leq \frac{x}{\sin{(x)}} &\leq \frac{1}{\cos{(x)}} \\ \frac{1}{\cos{(x)}} \geq \frac{\sin{(x)}}{x} &\geq \cos{(x)} \\ \cos{(x)} \leq \frac{\sin{(x)}}{x} &\leq \frac{1}{\cos{(x)}} \end{align*}$

and now if $\displaystyle \begin{align*} x \to 0 \end{align*}$ both $\displaystyle \begin{align*} \cos{(x)} \to 1 \end{align*}$ and $\displaystyle \begin{align*} \frac{1}{\cos{(x)}} \to 1 \end{align*}$, and since $\displaystyle \begin{align*} \frac{\sin{(x)}}{x} \end{align*}$ ends up sandwiched between two ones, it must also be that $\displaystyle \begin{align*} \frac{\sin{(x)}}{x} \to 1 \end{align*}$.

Note: Technically speaking we have only proved the right hand limit, but the left hand limit is pretty much identical, just with some negatives chucked in. I'll leave that for the readers :)
 

Attachments

  • th_trigcircle.jpg
    th_trigcircle.jpg
    4 KB · Views: 106
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 139 ·
5
Replies
139
Views
10K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
20
Views
2K