MHB What is the limit of the sine function as x approaches 1?

Click For Summary
SUMMARY

The limit of the function sin(x-1) / (x-1) as x approaches 1 is definitively equal to 1. This conclusion is derived using the substitution y = x - 1, leading to the limit lim(y → 0) sin(y) / y, which is a well-known limit equal to 1. Additionally, L'Hôpital's Rule can be applied, but it requires careful consideration of derivatives, as the limit being evaluated is integral to finding the derivative of sin(x). The geometric interpretation of the sine function also supports this conclusion through the squeeze theorem.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with the sine function and its properties
  • Knowledge of L'Hôpital's Rule and its application
  • Basic concepts of geometric interpretations of trigonometric functions
NEXT STEPS
  • Study the derivation of the limit lim(t → 0) sin(t) / t
  • Explore the application of L'Hôpital's Rule in various limit problems
  • Investigate the geometric definitions of trigonometric functions
  • Learn about the squeeze theorem and its applications in calculus
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking a deeper understanding of limits and trigonometric functions.

Yankel
Messages
390
Reaction score
0
Hello all,

I am looking for the limit of:

sin(x-1) / (x-1)

where x approaches 1. How do I do that ? Thanks !
 
Physics news on Phys.org
Yankel said:
Hello all,

I am looking for the limit of:

sin(x-1) / (x-1)

where x approaches 1. How do I do that ? Thanks !

We set $x-1=y$.
When $x \to 1$, $y \to 0$.

So, we have the limit:

$$\lim_{y \to 0} \frac{\sin y}{y}$$

and it is known that it is equal to $1$.

You can easily verify it, using L'Hôpital's rule..
 
Another way, $$\lim_{t\to 0}\frac{\sin t}{t}=\lim_{t\to 0}\frac{t+o(t)}{t}=\lim_{t\to 0}\left(1+\frac{o(t)}{t}\right)=1+0=1$$ $$\underbrace{\Rightarrow}_{t=x-1} \lim_{x\to 1}\frac{\sin (x-1)}{x-1}=1$$
 
evinda said:
We set $x-1=y$.
When $x \to 1$, $y \to 0$.

So, we have the limit:

$$\lim_{y \to 0} \frac{\sin y}{y}$$

and it is known that it is equal to $1$.

You can easily verify it, using L'Hôpital's rule...

No you most certainly can not! To use L'Hospital's Rule, you must be able to find the derivative of sin(x), so let's try it...

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \, \left[ \sin{(x)} \right] &= \lim_{h \to 0} \frac{\sin{ \left( x + h \right) } - \sin{(x)}}{h} \\ &= \lim_{h \to 0} \frac{\sin{(x)}\cos{(h)} + \cos{(x)}\sin{(h)} - \sin{(x)}}{h} \\ &= \sin{(x)}\lim_{h \to 0} \frac{\cos{(h)} - 1}{h} + \cos{(x)} \lim_{h \to 0} \frac{\sin{(h)}}{h} \end{align*}$

So to find the derivative of sin(x), we need to evaluate the very limit we are trying to find!

To find this limit, you instead have to use the geometric definition of the trigonometric functions on the unit circle.

View attachment 3663

Notice that the area of the sector is a little more than the area of the smaller triangle and a little less than the area of the bigger triangle, so when the angle x is measured in radians we have

$\displaystyle \begin{align*} \frac{\sin{(x)}\cos{(x)}}{2} \leq \frac{x}{2} &\leq \frac{\tan{(x)}}{2} \\ \frac{\sin{(x)}\cos{(x)}}{2} \leq \frac{x}{2} &\leq \frac{\sin{(x)}}{2\cos{(x)}} \\ \sin{(x)} \cos{(x)} \leq x &\leq \frac{\sin{(x)}}{\cos{(x)}}\\ \cos{(x)} \leq \frac{x}{\sin{(x)}} &\leq \frac{1}{\cos{(x)}} \\ \frac{1}{\cos{(x)}} \geq \frac{\sin{(x)}}{x} &\geq \cos{(x)} \\ \cos{(x)} \leq \frac{\sin{(x)}}{x} &\leq \frac{1}{\cos{(x)}} \end{align*}$

and now if $\displaystyle \begin{align*} x \to 0 \end{align*}$ both $\displaystyle \begin{align*} \cos{(x)} \to 1 \end{align*}$ and $\displaystyle \begin{align*} \frac{1}{\cos{(x)}} \to 1 \end{align*}$, and since $\displaystyle \begin{align*} \frac{\sin{(x)}}{x} \end{align*}$ ends up sandwiched between two ones, it must also be that $\displaystyle \begin{align*} \frac{\sin{(x)}}{x} \to 1 \end{align*}$.

Note: Technically speaking we have only proved the right hand limit, but the left hand limit is pretty much identical, just with some negatives chucked in. I'll leave that for the readers :)
 

Attachments

  • th_trigcircle.jpg
    th_trigcircle.jpg
    4 KB · Views: 111
Relativistic Momentum, Mass, and Energy Momentum and mass (...), the classic equations for conserving momentum and energy are not adequate for the analysis of high-speed collisions. (...) The momentum of a particle moving with velocity ##v## is given by $$p=\cfrac{mv}{\sqrt{1-(v^2/c^2)}}\qquad{R-10}$$ ENERGY In relativistic mechanics, as in classic mechanics, the net force on a particle is equal to the time rate of change of the momentum of the particle. Considering one-dimensional...

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 139 ·
5
Replies
139
Views
11K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K