What Is the Mass Driving Force for Mass Transfer in Gas Phase?

Click For Summary

Discussion Overview

The discussion revolves around calculating the mass driving force for mass transfer in the gas phase, specifically for a chemical species A that is soluble in water. Participants explore the application of Henry's Law and mass transfer principles to derive the mass transfer rate and driving force, involving calculations related to concentrations and partial pressures in both gas and liquid phases.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant presents a formula for calculating the mass concentration of species A in the gas phase using the ideal gas law, leading to a concentration of 0.069 kg/m³.
  • Another participant seeks assistance in calculating the mass transfer driving force, indicating uncertainty in their approach.
  • A participant shares their calculations for the driving force, converting 10 mol% to mass%, and calculating partial pressures for both inlet and outlet conditions, ultimately arriving at a concentration of 3.22 x 10^-3 kg/m³.
  • A similar calculation is repeated by another participant, confirming the steps taken to derive the mass transfer driving force, including the use of Henry's Law and the relationship between gas and liquid phase concentrations.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the correctness of the calculations presented. There are multiple approaches and interpretations of the problem, with some participants expressing uncertainty about their results.

Contextual Notes

Participants rely on various assumptions regarding the conversion between mole fraction and mass fraction, as well as the application of Henry's Law. There are unresolved details regarding the accuracy of the calculations and the specific conditions under which they apply.

joe98
Messages
26
Reaction score
0
Consider a chemical species A, which is soluble in water. The equilibrium of this system with A in air is described by the following question:

C(air) = HC(water)

where C(air) is mass concentration of the species in air
C(water) is the mass concentration in water, and the Henrys Law constant is H=0.00070(dimensionless)

the film mass transfer coefficient for the air side is 0.07m/s, and the water side is 8x10^-6 m/s

Answer the following, assuming the air stream contains 10 mol% of A at 100KPa and the aqueous solution contains 5 mass% of A at 25C...and use 17g/mol for molar mass of the speciesA) What is the mass driving force for the mass transfer, in mass concentration units, viewed from the gas phse?

I used C=PM/RT=100000*0.017/8.314*(273+25)=0.069 kg/m^3
What is the mass transfer rate( express as mass flux)?

Here i use
N=KC

where K=1/k + H/k2=5.33*10^-3 m/sCould someone assist me in this question...Any suggestions
 
Last edited:
Engineering news on Phys.org
Any suggestions guys on calculating the mass transfer driving force?
 
Heyguys, could you have a look if i am on the right track

Heres my working out to calculate the driving force in mass concentration units from the gas phase

I converted 10 mol% to 0.17 mass%, (which is in mole fraction)

then i calculated the partial pressures of inlet and outlet

PP(waterinlet)=100*10^3* 0=0
PP(gas inlet)= 100*10^3 * 0.005=5000Pa

Mass fraction(water)=0.05*0.0007=3.5*10^-5

Therefore , PP(water out) = 3.5*10^-5 * 100*10*3 = 3.5 Pa

Mass fraction (air) = 1.7*10^-3 * 0.0007=1.19*10^-6

therefore, PP(air out) = 1.19*10^-6 * 100*10^3 = 0.119 Pa

then i calculated C(lmcd) = (5000-3.5) - (0.119-0))/ln(5000-3.5)/0.119 =469 PaTherefore i used C=PM/RT = 469*0.017/8.314*298=3.22*10^-3 Kg/m^3Is this correct guys
 
joe98 said:
Heyguys, could you have a look if i am on the right track

Heres my working out to calculate the driving force in mass concentration units from the gas phase

I converted 10 mol% to 0.17 mass%, (which is in mole fraction)

then i calculated the partial pressures of inlet and outlet

PP(waterinlet)=100*10^3* 0=0
PP(gas inlet)= 100*10^3 * 0.005=5000Pa

Mass fraction(water)=0.05*0.0007=3.5*10^-5

Therefore , PP(water out) = 3.5*10^-5 * 100*10*3 = 3.5 Pa

Mass fraction (air) = 1.7*10^-3 * 0.0007=1.19*10^-6

therefore, PP(air out) = 1.19*10^-6 * 100*10^3 = 0.119 Pa

then i calculated C(lmcd) = (5000-3.5) - (0.119-0))/ln(5000-3.5)/0.119 =469 Pa


Therefore i used C=PM/RT = 469*0.017/8.314*298=3.22*10^-3 Kg/m^3


Is this correct guys

Getting the driving force:

1. calculate the concentration of the species in the bulk gas phase, using concentration units for the gas phase

2. calculate the concentration of the species in the bulk liquid phase, using concentration units for the liquid phase

3. take the result in step 2 and multiply by the Henry's Law constant to get the gas phase concentration that would be in equilibrium with the species concentration in the liquid phase

4. subtract the result from step 3 from the result for step 1. This is the mass transfer driving force for species flux from the gas phase to the liquid phase. The mass transfer driving force for species flux from the liquid phase to the gas phase is minus this value.
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
9
Views
8K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
3K