MHB What is the Maximum Norm Proof for Matrix A?

Amer
Messages
259
Reaction score
0
Prove that for

$A \in \mathbb{R}^{n\times n} $
||A||_{\infty} = \text{max}_{i=1,...,n} \sum_{j=1}^n |a_{ij} |

I know that
$||A||_{\infty} = \text{max} \dfrac{||Ax||_{\infty} }{||x||_{\infty}} $

such that $x \in \mathbb{R}^n$

any hints
 
Physics news on Phys.org
Amer said:
Prove that for

$A \in \mathbb{R}^{n\times n} $
||A||_{\infty} = \text{max}_{i=1,...,n} \sum_{j=1}^n |a_{ij} |

I know that
$||A||_{\infty} = \text{max} \dfrac{||Ax||_{\infty} }{||x||_{\infty}} $

such that $x \in \mathbb{R}^n$

any hints

I believe you can start with $||A||_p$ the p norm and take the limit as $p\to\infty$ to prove the problem.
Isn't the infinity norm just the max of $|a_i|$ not the sum of them?
 
dwsmith said:
I believe you can start with $||A||_p$ the p norm and take the limit as $p\to\infty$ to prove the problem.
Isn't the infinity norm just the max of $|a_i|$ not the sum of them?
for a vector it is the max of $|a_i|$
 
Amer said:
Prove that for

$A \in \mathbb{R}^{n\times n} $
||A||_{\infty} = \text{max}_{i=1,...,n} \sum_{j=1}^n |a_{ij} |

I know that
$||A||_{\infty} = \text{max} \dfrac{||Ax||_{\infty} }{||x||_{\infty}} $

such that $x \in \mathbb{R}^n$

any hints
You might find it easier to use the equivalent definition $\|A\|_\infty = \max \{\|Ax\|_\infty : \|x\|_\infty \leqslant 1\}.$ For $\|x\|_\infty \leqslant 1$, show that $$\|Ax\|_\infty = \max_{1\leqslant i\leqslant n}|(Ax)_i| = \max_{1\leqslant i\leqslant n}\Bigl| \sum_{j=1}^n a_{ij}x_j \Bigr| \leqslant \sum_{j=1}^n |a_{ij} |.$$
For the reverse inequality, find $\|Ax\|$ where $x$ is the vector with a 1 in the $i$th coordinate and 0 for every other coordinate.
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 19 ·
Replies
19
Views
5K
  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
Replies
21
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
790
  • · Replies 1 ·
Replies
1
Views
2K