MHB What is the Minimum Number of Friends Needed for Unique Dinner Invitations?

AI Thread Summary
To determine the minimum number of friends John needs for unique dinner invitations, the correct approach is to set the inequality as \(\binom{n}{3} \geq 365\). This leads to the equation \(\frac{(n-1)(n-2)n}{6} \geq 365\). The solution requires finding the smallest natural number \(n\) that satisfies this inequality. It is noted that \(\binom{14}{3} = 364\), indicating that at least 14 friends are necessary. Thus, John needs a minimum of 14 friends to ensure he can invite different triplets each evening without repetition.
Lancelot1
Messages
26
Reaction score
0
Hello all,

I am trying to solve this one:

John has n friends . He wants to invite in each evening (365 days a year) three of his friends for dinner. What should be the size of n, such that it will be possible not to invite the same triplet twice ?

What I did was:

\[\binom{n}{3}\leq 365\]

which turns into:

\[\frac{(n-1)(n-2)n}{6}\leq 365\]

I have tried to solve it, manually and with a mathematical software, in both ways n was not a natural number...where is my mistake ?
 
Mathematics news on Phys.org
Lancelot said:
I have tried to solve it, manually and with a mathematical software, in both ways n was not a natural number
First, the inequality should be $\binom{n}{3}\ge365$. Second, the answer to this problem is an inequality $n\ge\ldots$, not a specific value of $n$. For the lower bound of $n$ take the smallest natural number that is equal to or larger than the root of that equation. Note that $\binom{14}{3}=364$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
3
Views
2K
Replies
4
Views
4K
Replies
13
Views
3K
Replies
5
Views
3K
Replies
1
Views
4K
Replies
5
Views
4K
Back
Top