What is the Missing Step to Prove the Ladder Operator Equation?

<---
Messages
52
Reaction score
0

Homework Statement



The problem is to show that,

\hat{a_{+}}|\alpha&gt;=A_{\alpha}|\alpha+1&gt;

using

\hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt;It's not hard to manipulate \hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt; into the form,

\hat{a_{+}}\hat{a_{-}}[{\hat{a_{+}}|\alpha&gt;}]=(1+\alpha)[\hat{a_{+}}|\alpha&gt;]

But I am unable to make the connection from this to,

\hat{a_{+}}|\alpha&gt;=A_{\alpha}|\alpha+1&gt;

I know it's just using the properties of the eigenfunctions/values of a Hermatian operator at this point, but I seem to be missing exactly what that is.What am I missing?
 
Physics news on Phys.org
<--- said:
It's not hard to manipulate \hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt; into the form,

\hat{a_{+}}\hat{a_{-}}[{\hat{a_{+}}|\alpha&gt;}]=(1+\alpha)[\hat{a_{+}}|\alpha&gt;]

Well, this is an eigenvalue equation for the operator \hat{a}_+\hat{a}_-, with eigenvalue \alpha+1 and eigenstate \hat{a}_+|\alpha\rangle...but compare this to your original eigenvalue equation for this operator...surely if \alpha+1 is the eigenvalue, the eigenstate must be |\alpha+1\rangle (or at least a scalar multiple of it)...doesn't that tell you everything you need to know about \hat{a}_+|\alpha\rangle?:wink:
 
From what you've done, using both ladder operators on the ket, what does that say about N=\hat{a}_+\hat{a}_- and \hat{a}_\pm??
 
Thanks very much for the replys.

gabba, That did occur to me, but I wasn't willing to make the concession that,

\hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt;

Was a general property and not \alpha specific.Is this a property of NORMALIZED eigenvectors(for which I should have specified |alpha> is defined as)? If so I suppose that would explain the A_{\alpha} as a normalization constant.


jd, I know \hat{a_{+}}\hat{a_{-}} is Hermatian although neither are individually... I'm not sure if that's what you mean.
 
<--- said:
jd, I know \hat{a_{+}}\hat{a_{-}} is Hermatian although neither are individually... I'm not sure if that's what you mean.

I was trying to guide you with less words than what gabba said: If

<br /> N\hat{a}_\pm|n\rangle=(n\pm1)\hat{a}_\pm|n\rangle<br />

and N|n\rangle=n|n\rangle, then \hat{a}_\pm|n\rangle are multiplicative eigenstates of |n\pm1\rangle.
 
Thank you that helps, I'll have to stare at that for awhile to let it sink in.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top