What is the Missing Step to Prove the Ladder Operator Equation?

<---
Messages
52
Reaction score
0

Homework Statement



The problem is to show that,

\hat{a_{+}}|\alpha&gt;=A_{\alpha}|\alpha+1&gt;

using

\hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt;It's not hard to manipulate \hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt; into the form,

\hat{a_{+}}\hat{a_{-}}[{\hat{a_{+}}|\alpha&gt;}]=(1+\alpha)[\hat{a_{+}}|\alpha&gt;]

But I am unable to make the connection from this to,

\hat{a_{+}}|\alpha&gt;=A_{\alpha}|\alpha+1&gt;

I know it's just using the properties of the eigenfunctions/values of a Hermatian operator at this point, but I seem to be missing exactly what that is.What am I missing?
 
Physics news on Phys.org
<--- said:
It's not hard to manipulate \hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt; into the form,

\hat{a_{+}}\hat{a_{-}}[{\hat{a_{+}}|\alpha&gt;}]=(1+\alpha)[\hat{a_{+}}|\alpha&gt;]

Well, this is an eigenvalue equation for the operator \hat{a}_+\hat{a}_-, with eigenvalue \alpha+1 and eigenstate \hat{a}_+|\alpha\rangle...but compare this to your original eigenvalue equation for this operator...surely if \alpha+1 is the eigenvalue, the eigenstate must be |\alpha+1\rangle (or at least a scalar multiple of it)...doesn't that tell you everything you need to know about \hat{a}_+|\alpha\rangle?:wink:
 
From what you've done, using both ladder operators on the ket, what does that say about N=\hat{a}_+\hat{a}_- and \hat{a}_\pm??
 
Thanks very much for the replys.

gabba, That did occur to me, but I wasn't willing to make the concession that,

\hat{a_{+}}\hat{a_{-}}|\alpha&gt;=\alpha|\alpha&gt;

Was a general property and not \alpha specific.Is this a property of NORMALIZED eigenvectors(for which I should have specified |alpha> is defined as)? If so I suppose that would explain the A_{\alpha} as a normalization constant.


jd, I know \hat{a_{+}}\hat{a_{-}} is Hermatian although neither are individually... I'm not sure if that's what you mean.
 
<--- said:
jd, I know \hat{a_{+}}\hat{a_{-}} is Hermatian although neither are individually... I'm not sure if that's what you mean.

I was trying to guide you with less words than what gabba said: If

<br /> N\hat{a}_\pm|n\rangle=(n\pm1)\hat{a}_\pm|n\rangle<br />

and N|n\rangle=n|n\rangle, then \hat{a}_\pm|n\rangle are multiplicative eigenstates of |n\pm1\rangle.
 
Thank you that helps, I'll have to stare at that for awhile to let it sink in.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top