ultima9999
- 43
- 0
Yeah, I tried doing this question and just wanted to check if I was correct.
Write down the derivative of \arccos (4x^2) and state the domain for which the derivative applies.
\mbox{let}\ y = \arccos (4x^2), x\ \epsilon\ [-1, 1], y\ \epsilon\ [0, \pi]
\Leftrightarrow x = \frac{\sqrt{\cos y}}{2}
\begin{align*}<br /> \frac{d}{dx} x = \frac{d}{dx} \frac{\sqrt{\cos y}}{2} \\<br /> 1 = \frac{-\sin y}{4 \sqrt{\cos y}} \cdot \frac{dy}{dx} \\<br /> \frac{dy}{dx} = \frac{4 \sqrt{\cos y}}{-\sin y}<br /> \end{align*}
\cos^2 y + \sin^2 y = 1
\sin y = \sqrt{1 - \cos^2 y}, \mbox{because}\ y\ \epsilon\ [0, \pi]\ \mbox{so}\ \sin y \geq 0
\therefore \frac{dy}{dx} = \frac{4\sqrt{\cos y}}{-\sqrt{1 - \cos^2 y}}
Write down the derivative of \arccos (4x^2) and state the domain for which the derivative applies.
\mbox{let}\ y = \arccos (4x^2), x\ \epsilon\ [-1, 1], y\ \epsilon\ [0, \pi]
\Leftrightarrow x = \frac{\sqrt{\cos y}}{2}
\begin{align*}<br /> \frac{d}{dx} x = \frac{d}{dx} \frac{\sqrt{\cos y}}{2} \\<br /> 1 = \frac{-\sin y}{4 \sqrt{\cos y}} \cdot \frac{dy}{dx} \\<br /> \frac{dy}{dx} = \frac{4 \sqrt{\cos y}}{-\sin y}<br /> \end{align*}
\cos^2 y + \sin^2 y = 1
\sin y = \sqrt{1 - \cos^2 y}, \mbox{because}\ y\ \epsilon\ [0, \pi]\ \mbox{so}\ \sin y \geq 0
\therefore \frac{dy}{dx} = \frac{4\sqrt{\cos y}}{-\sqrt{1 - \cos^2 y}}
Last edited: