Satyam
- 33
- 0
I thought we do not know whether the Universe is finite or not. To give you an example, imagine the geometry of the Universe in two dimensions as a plane. It is flat, and a plane is normally infinite. But you can take a sheet of paper like an 'infinite' sheet of paper and you can roll it up and make a cylinder, and you can roll the cylinder again and make a torus i.e like a doughnut. The surface of the torus is also spatially flat, but it is finite. So we have two possibilities for a flat Universe: one infinite, like a plane, and one finite, like a torus, which is also flat.jbriggs444 said:When we talk about the universe expanding, we are not normally talking about an increase in the radius of the observable universe. Rather we are talking about the fact that all of the [large scale] things in the universe are getting farther apart.
If the universe as a whole is infinite, then it does not have a defined volume. So it is not correct to talk about its volume increasing or decreasing.
There is no such domain. It is not that sort of expansion. It is not expanding to fill some existing empty space. It is simply expanding. Distances are getting greater. There is no need consider our universe as somehow embedded within a higher dimensional space in order to describe its expansion.
Edit...
You had invoked the balloon analogy, pointing out that when the balloon expends, it displaces air. This is a good example of what it means to have a lower-dimensional space embedded in a higher dimensional space. The surface of the balloon is a two dimensional space. We picture it embedded in a pre-existing three dimensional space. We do that because it is easy to imagine.
But there is no requirement for the three dimensional space to actually exist. One can describe all of the relevant properties of a two dimensional surface with a spherical topology without ever considering it to exist within a three dimensional space. One can do it with a two dimensional coordinate system (like latitude and longitude). The trick is to use a distance metric that is different from the euclidean ##\sqrt{x^2 + y^2}## one. [One also has to split it up into multiple patches -- that's what we call a manifold].
Same for our four-dimensional space-time. We can describe the relevant properties in terms of a metric rather than in terms of some euclidean hyper-space within which it is hypothetically embedded.