If one has two single-particle Hilbert spaces ##\mathcal{H}_{1}## and ##\mathcal{H}_{2}##, such that their tensor product ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}## yields a two-particle Hilbert space in which the state vectors are defined as $$\lvert\psi ,\phi\rangle =\lvert\psi\rangle\otimes\lvert\phi\rangle\in\mathcal{H}_{1}\otimes\mathcal{H}_{2}$$ where ##\lvert\psi\rangle\in\mathcal{H}_{1}## and ##\lvert\phi\rangle\in\mathcal{H}_{2}##.(adsbygoogle = window.adsbygoogle || []).push({});

Now, the inner product for ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}## is defined such that $$\langle\phi ,\psi\vert\psi ,\phi\rangle =\left(\langle\phi\rvert\otimes\langle\psi\lvert\right)\left(\lvert\psi\rangle\otimes\lvert\phi\rangle\right) =\langle\psi\lvert\psi\rangle_{1}\langle\phi\lvert\phi\rangle_{2}$$ where ##\langle\cdot\lvert\cdot\rangle_{1}## is the inner product defined on ##\mathcal{H}_{1}## and ##\langle\cdot\lvert\cdot\rangle_{2}## the inner product defined on ##\mathcal{H}_{2}##.

How though is the outer product defined? Is it simply $$\lvert\psi ,\phi\rangle\langle\phi ,\psi\rvert =\lvert\psi\rangle\otimes\lvert\phi\rangle\langle\phi\rvert\otimes\langle\psi\rvert =\lvert\psi\rangle\langle\psi\rvert_{1} \lvert\phi\rangle\langle\phi\rvert_{2}$$ where ##\lvert\psi\rangle\langle\psi\rvert_{1}## is the outer product in ##\mathcal{H}_{1}## and ##\lvert\phi\rangle\langle\phi\rvert_{2}## is the outer product in ##\mathcal{H}_{2}##.

**Physics Forums | Science Articles, Homework Help, Discussion**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I What is the outer product of a tensor product of vectors?

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**