- #1

- 580

- 21

Now, the inner product for ##\mathcal{H}_{1}\otimes\mathcal{H}_{2}## is defined such that $$\langle\phi ,\psi\vert\psi ,\phi\rangle =\left(\langle\phi\rvert\otimes\langle\psi\lvert\right)\left(\lvert\psi\rangle\otimes\lvert\phi\rangle\right) =\langle\psi\lvert\psi\rangle_{1}\langle\phi\lvert\phi\rangle_{2}$$ where ##\langle\cdot\lvert\cdot\rangle_{1}## is the inner product defined on ##\mathcal{H}_{1}## and ##\langle\cdot\lvert\cdot\rangle_{2}## the inner product defined on ##\mathcal{H}_{2}##.

How though is the outer product defined? Is it simply $$\lvert\psi ,\phi\rangle\langle\phi ,\psi\rvert =\lvert\psi\rangle\otimes\lvert\phi\rangle\langle\phi\rvert\otimes\langle\psi\rvert =\lvert\psi\rangle\langle\psi\rvert_{1} \lvert\phi\rangle\langle\phi\rvert_{2}$$ where ##\lvert\psi\rangle\langle\psi\rvert_{1}## is the outer product in ##\mathcal{H}_{1}## and ##\lvert\phi\rangle\langle\phi\rvert_{2}## is the outer product in ##\mathcal{H}_{2}##.