Equivalence Relation to define the tensor product of Hilbert spaces

  • #1
victorvmotti
155
6
I'm following this video on how to establish an equivalence relation to define the tensor product space of Hilbert spaces:

##\mathcal{H1} \otimes\mathcal{H2}={T}\big/{\sim}##

The definition for the equivalence relation is given in the lecture vidoe as

##(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{j=1}^J\sum_{k=1}^Kc_jd_k(\psi_j,\varphi_k)##

But is this correct?

A linear combination of pairs on the right hand side is equivalent to only one pair on the left hand side.

Shouldn't we define the equivalence relation as below so that we have on both sides linear combination of pairs?

##\sum_{i=1}^Ia_i(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{i=1}^I\sum_{j=1}^J\sum_{k=1}^Ka_ic_jd_k(\psi_j,\varphi_k)##
 

Answers and Replies

  • #2
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
2022 Award
24,046
15,751
I'm following this video on how to establish an equivalence relation to define the tensor product space of Hilbert spaces:

##\mathcal{H1} \otimes\mathcal{H2}={T}\big/{\sim}##

The definition for the equivalence relation is given in the lecture vidoe as

##(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{j=1}^J\sum_{k=1}^Kc_jd_k(\psi_j,\varphi_k)##

But is this correct?

A linear combination of pairs on the right hand side is equivalent to only one pair on the left hand side.

Shouldn't we define the equivalence relation as below so that we have on both sides linear combination of pairs?

##\sum_{i=1}^Ia_i(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{i=1}^I\sum_{j=1}^J\sum_{k=1}^Ka_ic_jd_k(\psi_j,\varphi_k)##
Your additional ##a_i## are superfluous.
 

Suggested for: Equivalence Relation to define the tensor product of Hilbert spaces

  • Last Post
Replies
1
Views
378
Replies
2
Views
195
Replies
0
Views
163
Replies
4
Views
660
  • Last Post
Replies
32
Views
2K
  • Last Post
Replies
10
Views
241
  • Last Post
Replies
1
Views
787
Replies
7
Views
589
Replies
2
Views
161
Replies
1
Views
600
Top