Equivalence Relation to define the tensor product of Hilbert spaces

  • #1
116
1

Main Question or Discussion Point

I'm following this video on how to establish an equivalence relation to define the tensor product space of Hilbert spaces:

##\mathcal{H1} \otimes\mathcal{H2}={T}\big/{\sim}##

The definition for the equivalence relation is given in the lecture vidoe as

##(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{j=1}^J\sum_{k=1}^Kc_jd_k(\psi_j,\varphi_k)##

But is this correct?

A linear combination of pairs on the right hand side is equivalent to only one pair on the left hand side.

Shouldn't we define the equivalence relation as below so that we have on both sides linear combination of pairs?

##\sum_{i=1}^Ia_i(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{i=1}^I\sum_{j=1}^J\sum_{k=1}^Ka_ic_jd_k(\psi_j,\varphi_k)##
 

Answers and Replies

  • #2
PeroK
Science Advisor
Homework Helper
Insights Author
Gold Member
13,434
5,954
I'm following this video on how to establish an equivalence relation to define the tensor product space of Hilbert spaces:

##\mathcal{H1} \otimes\mathcal{H2}={T}\big/{\sim}##

The definition for the equivalence relation is given in the lecture vidoe as

##(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{j=1}^J\sum_{k=1}^Kc_jd_k(\psi_j,\varphi_k)##

But is this correct?

A linear combination of pairs on the right hand side is equivalent to only one pair on the left hand side.

Shouldn't we define the equivalence relation as below so that we have on both sides linear combination of pairs?

##\sum_{i=1}^Ia_i(\sum_{j=1}^{J}c_j\psi_j, \sum_{k=1}^{K}d_k\varphi_k) \sim \sum_{i=1}^I\sum_{j=1}^J\sum_{k=1}^Ka_ic_jd_k(\psi_j,\varphi_k)##
Your additional ##a_i## are superfluous.
 

Related Threads on Equivalence Relation to define the tensor product of Hilbert spaces

  • Last Post
Replies
6
Views
3K
Replies
4
Views
901
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
1
Views
1K
  • Last Post
2
Replies
33
Views
12K
  • Last Post
Replies
12
Views
6K
Replies
5
Views
877
  • Last Post
Replies
1
Views
1K
Replies
9
Views
3K
Replies
3
Views
6K
Top