MHB What is the Probability of Selecting at Least One Odd Numbered Ball?

AI Thread Summary
To find the probability of selecting at least one odd-numbered ball from a set of balls numbered 1 through 8 when drawing three without replacement, the complement method is recommended. The total number of outcomes for selecting three balls is 336. The probability of selecting only even-numbered balls is calculated as the number of combinations of even balls (4 x 3 x 2) divided by the total outcomes (8 x 7 x 6). Therefore, the probability of selecting at least one odd ball is 1 minus the probability of selecting only even balls. This approach clarifies the correct calculation needed to solve the problem.
elimeli
Messages
7
Reaction score
0
The final question in my homework says:

Assume the balls in the box are numbered 1 through 8, and that an experiment consists of randomly selecting 3 balls one after another without replacement. What probability should be assigned to the event that at least one ball has an odd number?

I have tried several approaches to the problem but they are all wrong :( Can somebody explain how to solve this?
 
Mathematics news on Phys.org
Hi elimeli. Are you willing to post your work and indicate where you may have had errors/misunderstandings?
 
greg1313 said:
Hi elimeli. Are you willing to post your work and indicate where you may have had errors/misunderstandings?

Since there are 336 outcomes, which I got by multiplying 8 x 7 x 6, that means that each outcome is assigned a probability of 1/336. Since they were asking for balls with odd numbers, I "removed" the even numbers from the original set of outcomes, so that it would be 4 x 3 x 2. So I assumed that at least one odd ball would be 4 x 3 x 2/8 x 7 x 6. However, that was not the answer. My other assumptions were guesses.
 
elimeli said:
Since there are 336 outcomes, which I got by multiplying 8 x 7 x 6, that means that each outcome is assigned a probability of 1/336. Since they were asking for balls with odd numbers, I "removed" the even numbers from the original set of outcomes, so that it would be 4 x 3 x 2. So I assumed that at least one odd ball would be 4 x 3 x 2/8 x 7 x 6. However, that was not the answer. My other assumptions were guesses.

Hi elimeli,

You've found the probability to find only even balls.
The probability to find at least one odd ball is the complement.
That is:
$$P(\text{at least one odd}) = 1 - P(\text{only even}) = 1 - \frac{\text{# combinations with only even}}{\text{# total}} = 1 - \frac{4 \cdot 3 \cdot 2}{8 \cdot 7 \cdot 6}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top