I What is the proper time of a vertically moving inertial clock?

KDP
Messages
25
Reaction score
7
TL;DR Summary
What is the elapsed proper time of vertically moving inertial clock in Schwarzschild geometry?
Hi. I am looking for an equation for the round trip elapsed proper time of a clock that is initially moving vertically straight up with a given initial velocity, reaches apogee and then returns to the starting location under gravity. I would like to use the external Schwarzschild geometry of a non rotating black hole to keep things as simple as possible. At all times during the the experiment the clock is moving inertially, so no rockets or thrusters involved (and no horizontal motion allowed).
 
Physics news on Phys.org
Is there any reason you can't do the calculation yourself?
 
PeroK said:
Is there any reason you can't do the calculation yourself?
Getting too old, I guess... :confused:
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top