I What is the quantum spin of a single electron in an (atomic) orbital?

Curious Cat
Messages
9
Reaction score
0
TL;DR Summary
I wrote a little (computer) program to fill in the atomic electron
configuration one electron at a time, for children, and it got me
thinking, about this.
What is the quantum spin of the valence electron in the silver atom in
the furnace in the Stern-Gerlach experiment?
. Up, down, at random, alternating, in a (quantum) superposition (of
both), or none? Does it even have/get one until it's measured/observed
/needed?
. Does the second electron, in an orbital, have to have the opposite
spin to start, with, or is it made to conform?
 
Physics news on Phys.org
In the furnace, the quantum spin of the valence electron of the silver atom should be random, no? There is no magnetic field inside the furnace relative to which there would be any reason that it should be up, or down.
(This can be described by using a density matrix instead of a wave function. One reason for using that description is that it makes it clear that there is no difference whether you assume that one half is up and the other half down, or that one half is left and the other half right, or that a quarter is respectively up, down, left, and right, or that the state is basically just totally random. ... But that goes into territory where only very patient children would be able to follow.)

The second electron in an orbital has the opposite spin of the first electron in the same orbital, otherwise it would be wrong to claim that both electrons are in the same orbital. Whether the orbital picture itself is fully appropriate is a separate question.
(Advanced level explanation: the orbitals which arise from the Hartree-Fock approximation cannot be fully appropriate. However, orbitals also arise from density functional theory computations, and there it is less clear whether they are appropriate or not, even so their exact interpretation remains unclear.)
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...

Similar threads

Back
Top