What is the Radius of Convergence for zsin(z^2)?

Click For Summary

Discussion Overview

The discussion revolves around finding the radius of convergence for the function \( z \sin(z^2) \) when expanded into a Maclaurin series. Participants explore the mathematical reasoning behind the radius of convergence, including the application of the ratio test and the behavior of polynomial limits.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants assert that the radius of convergence for \( z \sin(z^2) \) is \( R = \infty \) based on the convergence of the Maclaurin series for \( \sin(z) \).
  • Others question the validity of dividing by \( z \) to find the radius of convergence, suggesting that it may lead to confusion.
  • One participant calculates a radius of convergence of \( R = 4 \) but expresses uncertainty about their reasoning.
  • There is a discussion about the limit of the polynomial \( | -4n^2 + 10n + 6 | \) as \( n \) approaches infinity, with some participants arguing that it goes to infinity while others challenge this conclusion.
  • Participants discuss the significance of dividing terms by \( n^2 \) and how it affects the limit, with some suggesting that the simplification leads to different results.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the radius of convergence, with multiple competing views presented. Some believe it is infinite, while others suggest a finite radius based on their calculations.

Contextual Notes

There are unresolved mathematical steps regarding the application of the ratio test and the behavior of limits in polynomial expressions. Participants express differing interpretations of the results, indicating a need for further clarification.

aruwin
Messages
204
Reaction score
0
Hello.
I need explanation on why the answer for this problem is $R=\infty$.

Here's the question and the solution.

Expand the function into maclaurin series and find the radius of convergence.
$zsin(z^2)$

Solution:
$$zsin(z^2)=z\sum_{n=0}^{\infty}(-1)^n\frac{z^{2(2n+1)}}{(2n+1)!}$$

Divide both sides by z,

$$sin(z^2)=\sum_{n=0}^{\infty}(-1)^n\frac{z^{2(2n+1)}}{(2n+1)!}$$

So here's the calculation but I don't know how to get the radius of convergence. Answer is $\infty$.
 
Physics news on Phys.org
aruwin said:
Hello.
I need explanation on why the answer for this problem is $R=\infty$.

Here's the question and the solution.

Expand the function into maclaurin series and find the radius of convergence.
$zsin(z^2)$

Solution:
$$zsin(z^2)=z\sum_{n=0}^{\infty}(-1)^n\frac{z^{2(2n+1)}}{(2n+1)!}$$

Yes...

Divide both sides by z,

$$sin(z^2)=\sum_{n=0}^{\infty}(-1)^n\frac{z^{2(2n+1)}}{(2n+1)!}$$

WHY?! You were asked to find the MacLaurin Series for $\displaystyle \begin{align*} z\sin{ \left( z^2 \right) } \end{align*}$ WHICH YOU HAVE!

I don't know how to get the radius of convergence. Answer is $\infty$.

If the MacLaurin Series for $\displaystyle \begin{align*} \sin{(z)} \end{align*}$ is convergent for all z (it is - check with the ratio test), then so is any composition such as $\displaystyle \begin{align*} \sin{ \left( z^2 \right) } \end{align*}$ and multiplying by $\displaystyle \begin{align*} z \end{align*}$ is just multiplying a number by another number, still giving a number...[/size]
 
Prove It said:
Yes...
WHY?! You were asked to find the MacLaurin Series for $\displaystyle \begin{align*} z\sin{ \left( z^2 \right) } \end{align*}$ WHICH YOU HAVE!
If the MacLaurin Series for $\displaystyle \begin{align*} \sin{(z)} \end{align*}$ is convergent for all z (it is - check with the ratio test), then so is any composition such as $\displaystyle \begin{align*} \sin{ \left( z^2 \right) } \end{align*}$ and multiplying by $\displaystyle \begin{align*} z \end{align*}$ is just multiplying a number by another number, still giving a number...[/size]

Oh, I divided that part with z to use it to find the radius by ratio test.
I got R= 4. What is my mistake here?
 

Attachments

  • IMG_6667.JPG
    IMG_6667.JPG
    40.8 KB · Views: 119
How does $\lvert -4n^2 + 10n + 6 \rvert$ go to four as $n$ tends to infinity? There's a mistake in the before-last step, I think you might have been thinking of something else and weren't paying attention :p
 
Bacterius said:
How does $\lvert -4n^2 + 10n + 6 \rvert$ go to four as $n$ tends to infinity? There's a mistake in the before-last step, I think you might have been thinking of something else and weren't paying attention :p

Well, because the other 2 terms are getting closer to 0 while 4 doesn't? As you can see in my work, I divided all terms by $n^2$ and the only significant term left is 4. I am not sure, though.
 
aruwin said:
Well, because the other 2 terms are getting closer to 0 while 4 doesn't? As you can see in my work, I divided all terms by $n^2$ and the only significant term left is 4. I am not sure, though.

It is true that $10n + 6$ grows much slower in comparison to $4n^2$, but that's not what the problem is asking - you're trying to find the limit of that polynomial as $n$ goes to infinity, and that limit does go to infinity. An easy way to show that it does, is to show that the expression (in absolute values) eventually increases by at least $1$ every successive $n$ (but in general, any polynomial goes to either positive or negative infinity as its variable tends to infinity).
 
Bacterius said:
It is true that $10n + 6$ grows much slower in comparison to $4n^2$, but that's not what the problem is asking - you're trying to find the limit of that polynomial as $n$ goes to infinity, and that limit does go to infinity. An easy way to show that it does, is to show that the expression (in absolute values) eventually increases by at least $1$ every successive $n$ (but in general, any polynomial goes to either positive or negative infinity as its variable tends to infinity).

I'm sorry that I am still not quite clear with this. But how does it differ from this limit? In this one, the limit is 1/4 instead of infinity and the working is almost the same as this one.
I posted the question before on this thread:
http://mathhelpboards.com/calculus-10/how-calculate-complicated-factorial-11367.html#post53249

Is it because the simplification gives a fraction while this one has a whole number?
 
Last edited:
Bacterius said:
It is true that $10n + 6$ grows much slower in comparison to $4n^2$, but that's not what the problem is asking - you're trying to find the limit of that polynomial as $n$ goes to infinity, and that limit does go to infinity. An easy way to show that it does, is to show that the expression (in absolute values) eventually increases by at least $1$ every successive $n$ (but in general, any polynomial goes to either positive or negative infinity as its variable tends to infinity).
Oh, I get it now! I just googled about limits and learned it again. I think I understand now why the lmit is infinity. Thanks!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K