MHB What is the ratio of two integrals involving sine with exponents of sqrt(2)?

  • Thread starter Thread starter MountEvariste
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary
The discussion focuses on calculating the ratio of two integrals, I and J, defined as I = ∫₀^(π/2) sin^(√2+1)(x) dx and J = ∫₀^(π/2) sin^(√2-1)(x) dx. Participants share methods for evaluating these integrals, highlighting techniques such as integration by parts and properties of the sine function. The conversation emphasizes the mathematical relationships and simplifications that arise from the exponents involved. Ultimately, the goal is to determine the value of the ratio I/J. The thread showcases collaborative problem-solving in advanced calculus.
MountEvariste
Messages
85
Reaction score
0
$ \displaystyle I = \int_0^{\pi/2} \sin^{\sqrt{2}+1}{x}$ and $\displaystyle J = \int_0^{\pi/2} \sin^{\sqrt{2}-1}{x}$. Find $\displaystyle \frac{I}{J}.$
 
Last edited:
Mathematics news on Phys.org
Recall the so-called Beta function defined by $$B(a,b) = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\,dt.$$ Note that \begin{align*}\Gamma(a)\Gamma(b)&= \int_{0}^{\infty}e^{-u}u^{a-1}\,du\int_{0}^{\infty}e^{-v}v^{b-1}\,dv\\ &=\int_{0}^{\infty}\int_{0}^{\infty}e^{-u-v}u^{a-1}v^{b-1}\,du\,dv\end{align*} Setting $u = zt$ and $v=z(1-t)$, the change of variables theorem in 2-dimensions gives \begin{align*}\Gamma(a)\Gamma(b)&=\int_{0}^{\infty}e^{-z}z^{a+b-1}\,dz\int_{0}^{1}t^{a-1}(1-t)^{b-1}\,dt\\ &=\Gamma(a+b)B(a,b), \end{align*} from which we immediately obtain $$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$ Using the substitution $t = \sin^{2}\theta$ in the definition of $B(a,b)$ above, we see that $$\frac{1}{2}B(a,b)=\int_{0}^{\pi/2}\sin^{2a-1}x\cos^{2b-1}x\,dx.$$ Hence, \begin{align*}\frac{I}{J}&=\frac{\frac{1}{2}B\left(1+\frac{1}{\sqrt{2}},\frac{1}{2}\right)}{\frac{1}{2}B\left(\frac{1}{\sqrt{2}},\frac{1}{2}\right)}.\end{align*} Using $B(a,b) = \dfrac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ and $\Gamma(z+1) = z\Gamma(z),$ the above becomes \begin{align*}\frac{I}{J} &= \frac{\Gamma\left(1+\frac{1}{\sqrt{2}} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}{\Gamma\left(\frac{1}{\sqrt{2}} \right)\Gamma\left(1+\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}\\ &= \frac{\frac{1}{\sqrt{2}}\Gamma\left(\frac{1}{\sqrt{2}} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}{\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)\Gamma\left(\frac{1}{\sqrt{2}}\right)}\\ &=\frac{\sqrt{2}}{\sqrt{2}+1}\end{align*}
 
Integrate by parts. $$\begin{aligned} I = \int_0^{\pi/2}\sin^{\sqrt2+1}x\,dx &= \int_0^{\pi/2}\sin x\sin^{\sqrt2}x\,dx \\ &= \left[-\cos x\sin^{\sqrt2}x\right]_0^{\pi/2} +\sqrt2 \int_0^{\pi/2}\cos^2x\sin^{\sqrt2-1}x\,dx \\ &= \sqrt2 \int_0^{\pi/2}(1 - \sin^2x)\sin^{\sqrt2-1}x\,dx = \sqrt2(J-I).\end{aligned}$$ Therefore $\dfrac IJ = \dfrac{\sqrt2}{\sqrt2+1}.$
 
Nice solutions, GJA and Opalg.
 

Similar threads

Replies
1
Views
960
Replies
3
Views
2K
Replies
19
Views
3K
Replies
1
Views
942
Replies
2
Views
2K
Replies
4
Views
2K