What is the ratio of two integrals involving sine with exponents of sqrt(2)?

  • Context: MHB 
  • Thread starter Thread starter MountEvariste
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary

Discussion Overview

The discussion centers on the evaluation of the ratio of two integrals involving sine functions raised to the power of irrational numbers, specifically $\sqrt{2}$. The scope includes mathematical reasoning related to integral calculus.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • One participant defines the integrals as $I = \int_0^{\pi/2} \sin^{\sqrt{2}+1}{x}$ and $J = \int_0^{\pi/2} \sin^{\sqrt{2}-1}{x}$, seeking to find the ratio $\frac{I}{J}$.
  • Another participant acknowledges the contributions of others, specifically mentioning "Nice solutions, GJA and Opalg," without elaborating on the content of those solutions.

Areas of Agreement / Disagreement

The discussion does not present any consensus or resolution regarding the evaluation of the ratio of the integrals, as no solutions or methods have been detailed in the posts.

MountEvariste
Messages
85
Reaction score
0
$ \displaystyle I = \int_0^{\pi/2} \sin^{\sqrt{2}+1}{x}$ and $\displaystyle J = \int_0^{\pi/2} \sin^{\sqrt{2}-1}{x}$. Find $\displaystyle \frac{I}{J}.$
 
Last edited:
Physics news on Phys.org
Recall the so-called Beta function defined by $$B(a,b) = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\,dt.$$ Note that \begin{align*}\Gamma(a)\Gamma(b)&= \int_{0}^{\infty}e^{-u}u^{a-1}\,du\int_{0}^{\infty}e^{-v}v^{b-1}\,dv\\ &=\int_{0}^{\infty}\int_{0}^{\infty}e^{-u-v}u^{a-1}v^{b-1}\,du\,dv\end{align*} Setting $u = zt$ and $v=z(1-t)$, the change of variables theorem in 2-dimensions gives \begin{align*}\Gamma(a)\Gamma(b)&=\int_{0}^{\infty}e^{-z}z^{a+b-1}\,dz\int_{0}^{1}t^{a-1}(1-t)^{b-1}\,dt\\ &=\Gamma(a+b)B(a,b), \end{align*} from which we immediately obtain $$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$ Using the substitution $t = \sin^{2}\theta$ in the definition of $B(a,b)$ above, we see that $$\frac{1}{2}B(a,b)=\int_{0}^{\pi/2}\sin^{2a-1}x\cos^{2b-1}x\,dx.$$ Hence, \begin{align*}\frac{I}{J}&=\frac{\frac{1}{2}B\left(1+\frac{1}{\sqrt{2}},\frac{1}{2}\right)}{\frac{1}{2}B\left(\frac{1}{\sqrt{2}},\frac{1}{2}\right)}.\end{align*} Using $B(a,b) = \dfrac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ and $\Gamma(z+1) = z\Gamma(z),$ the above becomes \begin{align*}\frac{I}{J} &= \frac{\Gamma\left(1+\frac{1}{\sqrt{2}} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}{\Gamma\left(\frac{1}{\sqrt{2}} \right)\Gamma\left(1+\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}\\ &= \frac{\frac{1}{\sqrt{2}}\Gamma\left(\frac{1}{\sqrt{2}} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}{\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)\Gamma\left(\frac{1}{\sqrt{2}}\right)}\\ &=\frac{\sqrt{2}}{\sqrt{2}+1}\end{align*}
 
Integrate by parts. $$\begin{aligned} I = \int_0^{\pi/2}\sin^{\sqrt2+1}x\,dx &= \int_0^{\pi/2}\sin x\sin^{\sqrt2}x\,dx \\ &= \left[-\cos x\sin^{\sqrt2}x\right]_0^{\pi/2} +\sqrt2 \int_0^{\pi/2}\cos^2x\sin^{\sqrt2-1}x\,dx \\ &= \sqrt2 \int_0^{\pi/2}(1 - \sin^2x)\sin^{\sqrt2-1}x\,dx = \sqrt2(J-I).\end{aligned}$$ Therefore $\dfrac IJ = \dfrac{\sqrt2}{\sqrt2+1}.$
 
Nice solutions, GJA and Opalg.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
548
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K