MHB What is the ratio of two integrals involving sine with exponents of sqrt(2)?

  • Thread starter Thread starter MountEvariste
  • Start date Start date
  • Tags Tags
    Integrals
Click For Summary
The discussion focuses on calculating the ratio of two integrals, I and J, defined as I = ∫₀^(π/2) sin^(√2+1)(x) dx and J = ∫₀^(π/2) sin^(√2-1)(x) dx. Participants share methods for evaluating these integrals, highlighting techniques such as integration by parts and properties of the sine function. The conversation emphasizes the mathematical relationships and simplifications that arise from the exponents involved. Ultimately, the goal is to determine the value of the ratio I/J. The thread showcases collaborative problem-solving in advanced calculus.
MountEvariste
Messages
85
Reaction score
0
$ \displaystyle I = \int_0^{\pi/2} \sin^{\sqrt{2}+1}{x}$ and $\displaystyle J = \int_0^{\pi/2} \sin^{\sqrt{2}-1}{x}$. Find $\displaystyle \frac{I}{J}.$
 
Last edited:
Mathematics news on Phys.org
Recall the so-called Beta function defined by $$B(a,b) = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\,dt.$$ Note that \begin{align*}\Gamma(a)\Gamma(b)&= \int_{0}^{\infty}e^{-u}u^{a-1}\,du\int_{0}^{\infty}e^{-v}v^{b-1}\,dv\\ &=\int_{0}^{\infty}\int_{0}^{\infty}e^{-u-v}u^{a-1}v^{b-1}\,du\,dv\end{align*} Setting $u = zt$ and $v=z(1-t)$, the change of variables theorem in 2-dimensions gives \begin{align*}\Gamma(a)\Gamma(b)&=\int_{0}^{\infty}e^{-z}z^{a+b-1}\,dz\int_{0}^{1}t^{a-1}(1-t)^{b-1}\,dt\\ &=\Gamma(a+b)B(a,b), \end{align*} from which we immediately obtain $$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.$$ Using the substitution $t = \sin^{2}\theta$ in the definition of $B(a,b)$ above, we see that $$\frac{1}{2}B(a,b)=\int_{0}^{\pi/2}\sin^{2a-1}x\cos^{2b-1}x\,dx.$$ Hence, \begin{align*}\frac{I}{J}&=\frac{\frac{1}{2}B\left(1+\frac{1}{\sqrt{2}},\frac{1}{2}\right)}{\frac{1}{2}B\left(\frac{1}{\sqrt{2}},\frac{1}{2}\right)}.\end{align*} Using $B(a,b) = \dfrac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$ and $\Gamma(z+1) = z\Gamma(z),$ the above becomes \begin{align*}\frac{I}{J} &= \frac{\Gamma\left(1+\frac{1}{\sqrt{2}} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}{\Gamma\left(\frac{1}{\sqrt{2}} \right)\Gamma\left(1+\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}\\ &= \frac{\frac{1}{\sqrt{2}}\Gamma\left(\frac{1}{\sqrt{2}} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)}{\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)\Gamma\left(\frac{1}{\sqrt{2}}+\frac{1}{2} \right)\Gamma\left(\frac{1}{\sqrt{2}}\right)}\\ &=\frac{\sqrt{2}}{\sqrt{2}+1}\end{align*}
 
Integrate by parts. $$\begin{aligned} I = \int_0^{\pi/2}\sin^{\sqrt2+1}x\,dx &= \int_0^{\pi/2}\sin x\sin^{\sqrt2}x\,dx \\ &= \left[-\cos x\sin^{\sqrt2}x\right]_0^{\pi/2} +\sqrt2 \int_0^{\pi/2}\cos^2x\sin^{\sqrt2-1}x\,dx \\ &= \sqrt2 \int_0^{\pi/2}(1 - \sin^2x)\sin^{\sqrt2-1}x\,dx = \sqrt2(J-I).\end{aligned}$$ Therefore $\dfrac IJ = \dfrac{\sqrt2}{\sqrt2+1}.$
 
Nice solutions, GJA and Opalg.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
975
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 1 ·
Replies
1
Views
957
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K