Here's an alternative derivation.$ \displaystyle \log G(z+1) = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{n=1}^{\infty} \Bigg( -z+\frac{z^{2}}{2n} + n \log \Big( 1+ \frac{z}{n} \Big) \Bigg) $
$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{n=1}^{\infty} \Big(-z + \frac{z^{2}}{2n} + n \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \frac{z^{k}}{n^{k}} \Big)$
$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{n=1}^{\infty} n \sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} \frac{z^{k}}{n^{k}} $
$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} z^{k} \sum_{n=1}^{\infty} \frac{1}{n^{k-1}} $
$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} +\sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} \zeta(k-1) z^{k} $
$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} +\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k+1} \zeta(k) z^{k+1} $Now I'm going to use the generating function $ \displaystyle\sum_{k=2}^{\infty} \zeta(k) z^{k-1} = - \gamma - \psi(1-z)$.
A derivation can be found here. Then
$\displaystyle \sum_{k=2}^{\infty} (-1)^{k} \zeta(k) z^{k} = \gamma z + z \psi(z+1) $
And upon integrating both sides from $0$ to $z$,
$ \displaystyle \sum_{k=2}^{\infty} \frac{(-1)^{k}}{k+1} \zeta(k) z^{k+1} = \frac{\gamma z^{2}}{2} + z \log \Gamma(z+1) - \int_{0}^{z} \log \Gamma(x+1) \ dx $So
$ \displaystyle G(z+1) = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \frac{1}{2} \gamma z^{2} + z \log \Gamma(z+1) - \int_{0}^{z} \log \Gamma(x+1) \ dx $
$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) + z \log z + z \log \Gamma(z) -z \log z + z - \int_{0}^{z} \log \Gamma(x) \ dx $
$ \displaystyle = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} + z \ln \Gamma(z) -\int_{0}^{z} \log \Gamma(x) \ dx $And by analytic continuation, the equation should be valid for $\text{Re}(z) > 0 $, not just $0 < \text{Re}(z) < 1$.