What is the Relationship Between Loggamma Integral and Barnes' G-Function?

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
SUMMARY

The discussion centers on the relationship between the Loggamma Integral and Barnes' G-Function, specifically proving the parametric evaluation of the integral $$\int_0^z\log\Gamma(x)\,dx$$. Key formulas include the canonical product forms for the Gamma Function $$\Gamma(z)$$ and Barnes' G-Function $$G(z)$$, as well as the Euler-Mascheroni constant $$\gamma$$. Participants explore Fourier expansions and product representations, ultimately deriving the relationship $$\int_0^z\log\Gamma(x)\,dx=\frac{z(1-z)}{2}+\frac{z}{2}\log(2\pi)+z\,\log\Gamma(z)-\log G(z+1)$$.

PREREQUISITES
  • Understanding of Gamma Functions, specifically $$\Gamma(z)$$ and Barnes' G-Function $$G(z)$$.
  • Familiarity with the Euler-Mascheroni constant $$\gamma$$ and its properties.
  • Knowledge of Fourier series and their application in mathematical analysis.
  • Proficiency in calculus, particularly integration techniques involving logarithmic functions.
NEXT STEPS
  • Research the properties and applications of the Barnes G-Function in advanced mathematics.
  • Study the Fourier expansion of the Gamma Function and its implications in analysis.
  • Explore the Weierstrass product representation of the Gamma Function for deeper insights.
  • Investigate analytic continuation techniques for special functions, focusing on their convergence properties.
USEFUL FOR

Mathematicians, researchers in mathematical analysis, and students studying special functions, particularly those interested in the properties of Gamma Functions and their applications in complex analysis.

DreamWeaver
Messages
297
Reaction score
0
Assuming the canonical product forms for the Gamma Function $$\Gamma(z)$$ and Double Gamma Function (Barnes' G-Function) $$\text{G}(z)$$:$$\frac{1}{\Gamma(x)}=xe^{\gamma x}\, \prod_{k=1}^{\infty}\Bigg\{e^{-x/k}\left(1+\frac{x}{k}\right)\Bigg\}$$$$G(z+1)=(2\pi)^{z/2}\text{exp}\left(-\frac{z+z^2(1+\gamma)}{2}\right)\, \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right) \text {exp}\left(\frac{z^2}{2k}-z\right)$$Where the Euler-Mascheroni constant is defined by the limit:$$\gamma=\lim_{n\to\infty}\, \left(1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n}-\log n \right)$$And the Barnes' G-Function has the property:$$\text{G}(z+1)=\text{G}(z)\,\Gamma(z)$$Prove the following parametric evaluation:
$$\int_0^z\log\Gamma(x)\,dx=$$$$\frac{z(1-z)}{2}+\frac{z}{2}\log(2\pi)+z\,\log\Gamma(z)-\log\text{G}(z+1)$$

(Hug) (Hug) (Hug)
 
Physics news on Phys.org
Well, for $0 < x <1 $, $\displaystyle \ln \Gamma(x)$ has the Fourier expansion

$$ \ln \Gamma(x) = \frac{\ln 2 \pi}{2} + \sum_{n=1}^{\infty} \frac{1}{2n} \cos(2 \pi n x) + \sum_{n=1}^{\infty} \frac{\gamma + \ln(2 \pi n) }{n \pi} \sin(2 \pi n x)$$So

$$\int_{0}^{z} \ln \Gamma(x) \ dx = \frac{z}{2} \ln (2 \pi) + \frac{1}{4 \pi} \sum_{n=1}^{\infty} \frac{\sin(2 \pi n z)}{n^{2}} + \frac{\gamma}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{\cos(2 \pi n z)-1}{n^{2}} $$

$$ + \frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{\ln(2 \pi n)}{n^{2}} \Big(\cos(2 \pi nz) -1 \Big)$$

I don't know what to do from there, though.
 
Here's a little hint, if you like... (Bandit)
Take the logarithm of canonical product for the Barnes G function. Keep a note of that result, integrate the logarithm of the Weierstrauss product form for the Gamma function from 0 to z, and then compare the two...
 
Using the product representation which I still can't derive,

$\displaystyle \ln G(z+1) = \frac{z}{2} \ln(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{k=1}^{\infty} \Bigg( -z+\frac{z^{2}}{2k} + k \ln \Big( 1+ \frac{z}{k} \Big) \Bigg)$And from the Weierstrass product representation of the Gamma function,

$ \displaystyle \ln \Gamma(z+1) = - \gamma z + \sum_{k=1}^{\infty} \Bigg( \frac{z}{k} - \ln \Big(1+ \frac{z}{k} \Big) \Bigg) $

EDIT: $ \displaystyle \int_{0}^{z} \ln \Gamma(x+1) \ dx = -\frac{\gamma z^{2}}{2} + \sum_{k=1}^{\infty} \Bigg( \frac{z^{2}}{2k} - (z+1)\log \Big( 1+ \frac{z}{k} \Big) - z \Bigg)$So $\displaystyle z \ln \Gamma(z+1) - \int_{0}^{z} \ln \Gamma(z+1) = - \frac{1}{2} \gamma z^{2} + \sum_{k=1}^{\infty} \Bigg(\frac{z^{2}}{2k} + k \ln \Big( 1+ \frac{z}{k} \Big) -x \Bigg)$Rearranging we have

$ \displaystyle \int_{0}^{z} \ln \Gamma (x+1) \ dx = \int_{0}^{z} \ln \Gamma(x+1) \ dx + \int_{0}^{z} \ln z = \int_{0}^{z} \ln \Gamma(x+1) \ dx + z \ln z -z $

$ \displaystyle = \frac{z}{2} \ln(2 \pi)- \frac{1}{2} z(z+1) + z \ln \Gamma(z+1) - G (z+1)$

$ \displaystyle = \frac{z}{2} \ln(2 \pi)- \frac{1}{2} z(z+1) + z \ln z + z \ln \Gamma(z) - G(z+1)$$ \displaystyle \implies \int_{0}^{z} \ln \Gamma(x+1) \ dx = \frac{z}{2} \ln(2 \pi) - \frac{z(z-1)}{2} + z \ln \Gamma(z) - G(z+1) $
 
Last edited:
Random Variable said:
I'm feeling quite stupid.
With the sort of problems you solve? (Wait) I hope you're not selling that, cos I'm not buying it... Meh!

It's just late, is all... (Bandit)Here's a slightly different angle: looking at the closed form given, express the series difference$$z\log\Gamma(z)-\log G(z+1)$$using both canonical products...

Can you spot the similarity between that and $$\int_0^z\log\Gamma(x)\,dx=\int_0^z\log\left[ xe^{\gamma x} \prod_{k=1}^{\infty} \Bigg\{ e^{-x/k}\left(1+\frac{x}{k}\right)\Bigg\}\right]\,dx$$...? ;)If you write$$z\log\Gamma(z)-\log G(z+1)-\int_0^z\log\left[ xe^{\gamma x} \prod_{k=1}^{\infty} \Bigg\{ e^{-x/k}\left(1+\frac{x}{k}\right)\Bigg\}\right]\,dx$$what do you get...?
 
You know what I did? I differentiated $ \displaystyle \ln \Big(1+ \frac{z}{k} \Big)$ instead of integrating. (Doh)

EDIT: I fixed my post.
 
Last edited:
Random Variable said:
You know what I did? I differentiated $ \displaystyle \ln \Big(1+ \frac{z}{k} \Big)$ instead of integrating. (Doh)

EDIT: I fixed my post.

Easily done! Been there, bought - and regretted buying - the t-shirt...
 
DreamWeaver

Could you show either in this thread or in the thread on the other forum that the infinite product representation of $G(x)$ satisfies the functional equation?

And so you're aware, you're missing the exponent $k$.$ \displaystyle G(z+1)=(2\pi)^{z/2}\text{exp}\left(-\frac{z+z^2(1+\gamma)}{2}\right)\, \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right)^{ {\color{red}{k}} } \text {exp}\left(\frac{z^2}{2k}-z\right)$
 
Random Variable said:
DreamWeaverAnd so you're aware, you're missing the exponent $k$.
Oooops! :o :o :o

Sorry about that...
Random Variable said:
DreamWeaver

Could you show either in this thread or in the thread on the other forum that the infinite

product representation of $G(x)$ satisfies the functional equation?
Good idea! :D It's been a very long day at work, mind, so I'll give this one a go tomorrow. If I get started now... (Wait)
 
  • #10
Here's an alternative derivation.$ \displaystyle \log G(z+1) = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{n=1}^{\infty} \Bigg( -z+\frac{z^{2}}{2n} + n \log \Big( 1+ \frac{z}{n} \Big) \Bigg) $

$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{n=1}^{\infty} \Big(-z + \frac{z^{2}}{2n} + n \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \frac{z^{k}}{n^{k}} \Big)$

$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{n=1}^{\infty} n \sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} \frac{z^{k}}{n^{k}} $

$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} z^{k} \sum_{n=1}^{\infty} \frac{1}{n^{k-1}} $

$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} +\sum_{k=3}^{\infty} \frac{(-1)^{k-1}}{k} \zeta(k-1) z^{k} $

$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} +\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k+1} \zeta(k) z^{k+1} $Now I'm going to use the generating function $ \displaystyle\sum_{k=2}^{\infty} \zeta(k) z^{k-1} = - \gamma - \psi(1-z)$.

A derivation can be found here. Then

$\displaystyle \sum_{k=2}^{\infty} (-1)^{k} \zeta(k) z^{k} = \gamma z + z \psi(z+1) $

And upon integrating both sides from $0$ to $z$,

$ \displaystyle \sum_{k=2}^{\infty} \frac{(-1)^{k}}{k+1} \zeta(k) z^{k+1} = \frac{\gamma z^{2}}{2} + z \log \Gamma(z+1) - \int_{0}^{z} \log \Gamma(x+1) \ dx $So

$ \displaystyle G(z+1) = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) - \frac{1}{2}\gamma z^{2} + \frac{1}{2} \gamma z^{2} + z \log \Gamma(z+1) - \int_{0}^{z} \log \Gamma(x+1) \ dx $

$ \displaystyle = \frac{z}{2} \log(2 \pi) - \frac{1}{2} z(z+1) + z \log z + z \log \Gamma(z) -z \log z + z - \int_{0}^{z} \log \Gamma(x) \ dx $

$ \displaystyle = \frac{z}{2} \log(2 \pi) + \frac{z(1-z)}{2} + z \ln \Gamma(z) -\int_{0}^{z} \log \Gamma(x) \ dx $And by analytic continuation, the equation should be valid for $\text{Re}(z) > 0 $, not just $0 < \text{Re}(z) < 1$.
 
Last edited:
  • #11
Very nice RV !
 
  • #13
Very nice indeed, RV...! (Muscle)

On the subject of the Barnes G-function, have you - in your travails - come across a Fourier expansion? I'm sure there must be one... Would be mighty useful, methinks.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K