What is the residue of a complex valued function at a pole of order $m$?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on the residue of a complex valued function at a pole of order m. It states that for a function f(z) with a pole of order m at z=z0, the residue can be calculated using a specific limit involving the (m-1)th derivative. The formula provided is \[\text{res}(f,z_0)=\lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[ (z-z_0)^m f(z) \right].\] The problem was successfully solved by a participant named Sudharaka, whose solution is referenced in the discussion. This highlights the mathematical approach to determining residues in complex analysis.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Let $f(z)$ be a complex valued function that has a pole of order $m\geq 1$ at $z=z_0$. Prove that the residue of $f$ at this point is given by

\[\text{res}(f,z_0)=\lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[ (z-z_0)^m f(z) \right]. \]

-----

Hint:
Consider the Laurent series characterization of poles for $f(z)$, i.e. let
\[f(z)=\frac{a_{-m}}{(z-z_0)^m}+\cdots+\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\ldots\]
Find a way to extract the residue $a_{-1}$ from this.

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka. You can find his solution below.

\[f(z)=\frac{a_{-m}}{(z-z_0)^m}+\cdots+\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\ldots\]

\[\Rightarrow (z-z_0)^m f(z)=a_{-m}+\cdots+a_{-1}(z-z_0)^{m-1}+a_0 (z-z_0)^m+a_1(z-z_0)^{m+1}+a_2(z-z_0)^{m+2}+\ldots\]

\[\Rightarrow \frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]=a_{-1}(m-1)! +a_0 (m-1)! (z-z_0)+ a_1(m-1)! (z-z_0)^{2}+ a_2(m-1)! (z-z_0)^{3}+\ldots\]

\[\Rightarrow \frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]=a_{-1} +a_0 (z-z_0)+ a_1 (z-z_0)^{2}+ a_2 (z-z_0)^{3}+\ldots\]

\[\Rightarrow \lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]=a_{-1}\]

\[\therefore \text{res}(f,z_0)=a_{-1}=\lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]\]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K