What is the residue of a complex valued function at a pole of order $m$?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The residue of a complex valued function \( f(z) \) at a pole of order \( m \) is defined by the formula \(\text{res}(f,z_0)=\lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[ (z-z_0)^m f(z) \right]\). This formula allows for the calculation of residues for functions with poles of any order \( m \geq 1 \). The discussion highlights the importance of understanding this concept in complex analysis, particularly in evaluating integrals using residue theory.

PREREQUISITES
  • Complex analysis fundamentals
  • Understanding of poles and residues
  • Knowledge of differentiation and limits
  • Familiarity with the notation of derivatives
NEXT STEPS
  • Study the properties of residues in complex analysis
  • Learn about Laurent series and their applications
  • Explore contour integration techniques
  • Investigate examples of functions with multiple poles
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on complex analysis, as well as physicists and engineers who apply these concepts in theoretical and applied contexts.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Let $f(z)$ be a complex valued function that has a pole of order $m\geq 1$ at $z=z_0$. Prove that the residue of $f$ at this point is given by

\[\text{res}(f,z_0)=\lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[ (z-z_0)^m f(z) \right]. \]

-----

Hint:
Consider the Laurent series characterization of poles for $f(z)$, i.e. let
\[f(z)=\frac{a_{-m}}{(z-z_0)^m}+\cdots+\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\ldots\]
Find a way to extract the residue $a_{-1}$ from this.

 
Physics news on Phys.org
This week's question was correctly answered by Sudharaka. You can find his solution below.

\[f(z)=\frac{a_{-m}}{(z-z_0)^m}+\cdots+\frac{a_{-1}}{z-z_0}+a_0+a_1(z-z_0)+a_2(z-z_0)^2+\ldots\]

\[\Rightarrow (z-z_0)^m f(z)=a_{-m}+\cdots+a_{-1}(z-z_0)^{m-1}+a_0 (z-z_0)^m+a_1(z-z_0)^{m+1}+a_2(z-z_0)^{m+2}+\ldots\]

\[\Rightarrow \frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]=a_{-1}(m-1)! +a_0 (m-1)! (z-z_0)+ a_1(m-1)! (z-z_0)^{2}+ a_2(m-1)! (z-z_0)^{3}+\ldots\]

\[\Rightarrow \frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]=a_{-1} +a_0 (z-z_0)+ a_1 (z-z_0)^{2}+ a_2 (z-z_0)^{3}+\ldots\]

\[\Rightarrow \lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]=a_{-1}\]

\[\therefore \text{res}(f,z_0)=a_{-1}=\lim_{z\rightarrow z_0}\frac{1}{(m-1)!}\frac{\,d^{m-1}}{\,dz^{m-1}} \left[(z-z_0)^m f(z) \right]\]
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K