What is the sign convention for work in dE = q - w

Click For Summary
SUMMARY

The discussion clarifies the sign convention for work in the energy change equation, specifically dE = q - w versus dE = q + w. It establishes that the convention of considering work done on the system as positive is gaining acceptance, while the historical convention of dE = q + w requires careful sign assignment based on the process type (expansion or compression). The examples provided, including the ammonia synthesis and water evaporation, illustrate how to apply these conventions correctly to calculate changes in internal energy. The calculations consistently yield the same results regardless of the chosen convention, provided that signs are assigned accurately.

PREREQUISITES
  • Understanding of the First Law of Thermodynamics
  • Familiarity with thermodynamic processes (expansion and compression)
  • Knowledge of internal energy and its calculation
  • Basic grasp of molar volumes and their significance in gas reactions
NEXT STEPS
  • Study the First Law of Thermodynamics in detail
  • Learn about the implications of sign conventions in thermodynamic equations
  • Explore the concept of molar volume and its calculations in gas reactions
  • Review practical applications of thermodynamic principles in chemical engineering
USEFUL FOR

Chemistry students, chemical engineers, and anyone studying thermodynamics who seeks to understand the nuances of energy change calculations and sign conventions in thermodynamic processes.

Luyolo Radebe
Messages
1
Reaction score
0
Why is it not just dE = q + w because I assume if you use general sign convention and take work to be negative when it is done by the system and positive when it is done on the system, you should get the right answer. Silly question but I'd appreciate some clarity on this formula please?
 
Chemistry news on Phys.org
Luyolo Radebe said:
Why is it not just dE = q + w because I assume if you use general sign convention and take work to be negative when it is done by the system and positive when it is done on the system, you should get the right answer. Silly question but I'd appreciate some clarity on this formula please?
I believe that the convention to take work done on the system as positive is catching on. (It's the one I prefer.) I believe the other convention is just historical. With a heat engine, you put heat in and get work out, so they thought it natural to make those two positive.

As long as you are consistent, either convention works.
 
  • Like
Likes   Reactions: MexChemE
In some textbooks on the 1st Law of Thermodynamics, ∆E = q + w while in some use ∆E = q - w. The difference is when using ∆E = q + w, one must determine if the process of interest is undergoing 'expansion' or undergoing 'compression' and assign a sign for endothermic work (+) or exothermic work (-). Using ∆E = q - w this is unnecessary. For example, consider 3H2(g) + N2(g) => 2NH3(g). Note there are 4 molar volumes of gas on the reactant side of the equation and 2 molar volumes of gas on the product side of the equation. The change in molar volume from reactants to products is a decrease in 2 Vm of gas. This is considered a 'compression' type reaction in which work is endothermic and a (+) sign must be assigned to work. Visualize ... squeezing a balloon ... the molecules of air (gas) push back on your hands indicating they have a higher energy;i.e., endothermic work. Some texts refer to this as the surroundings doing work on the system. So when using ∆E = q + w it becomes ∆E = q + (+w). For the above ammonia reaction, the heat of reaction ( forming 2 moles ammonia ) is q = -91.8 Kj and work is w = +5 Kj. The change in internal energy ∆E = q + w = (-91.8 Kj) + (+5.0 Kj) = -86.8 Kj net change in internal energy. Now, consider the evaporation of 1 mole of water: H2O(l) => H2O(g). This process is going from 0.00 molar volumes for liquid water (only gases have molar volumes) to 1.00 molar volumes for gas phase water. This process is considered an 'expansion' process and work is exothermic. One must assign a (-) sign to the work giving ∆E = q + (-w). The heat of vaporization of water is q = 40.7 Kj and work for expansion is w = - 2.5 Kj, giving ∆E = q + w = (+40.7 Kj) + (-2.5 Kj) = +38.2 Kj net change in internal energy. The assignment of the (-) sign is b/c expanding gases will lose work energy and hence be exothermic. Visualize the balloon experiment again, but this time visualize the balloon instantaneously disappearing, or popping the balloon. The gas expands rapidly and ( I like to think of the gas particles as relaxing ) loses a small amount work energy. This is referred to as the system doing work on the surroundings.

Now the same results can be obtained using ∆E = q - w, but this time substitute the calculated change in molar volume along with the sign imposed by the calculation. That is, for the ammonia reaction the change in molar volume is the same decrease in molar volumes, or Vm = -2. The work of 2 molar volumes is ~ -5.0 kj. Including heat of reaction, the calculation is ∆E = q - w = (-91.8 Kj) - (-5.0 Kj) = (-91.8 Kj + 5.0 Kj) = -86.8 Kj. Same as the above calculation, but the sign of the decreasing volume is substituted along with the change in molar volume calculated. The water expansion is done by the same logic. Water(l) => Water(g) gives a 1 molar volume increase, or Vm = +1.00V m => work = ~ +2.5 Kj. Subbing the heat of vaporization q = +40.7 Kj, gives ∆E = q - w = (+40.7 Kj) - ( +2.5 Kj) = (+40.7 Kj - 2.5 Kj) = +38.2 Kj. Same as above evaporation problem.

Please note, the calculation of work values is a quick estimation using w = 2.5(∆Vm). If using the ∆E = q + w the equation becomes
∆E = q + [2.5∆V m] in which you must sub an assigned sign => (-) for expansion and (+) for compression, but if using ∆E = q - w the equation becomes ∆E = q - [2.5∆V m] in which you simply calculate the change in volume and include the imposed sign of the change.

Here's a link to some of my thermodynamic lectures. Use them if you wish. This is an open website, free for anyone interested in topics in general chemistry. Hope this helps. http://www.chemunlimited.com/vidsx312sp15.html
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
11K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 13 ·
Replies
13
Views
7K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 20 ·
Replies
20
Views
3K