Petar Mali
- 283
- 0
\alpha=\left(\begin{array}{cccc}<br />
\gamma& 0&0& -\beta\gamma\\<br />
0&1& 0 & 0\\<br />
0 & 0 & 1 & 0\\<br />
-\beta\gamma & 0 & 0 & \gamma \end{array} \right)x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}
\alpha is Lorrentz transformation matrix. Can I see something more about it? . It's symmetric. That is important.
Tr(\alpha)=2\gamma +2
Is this value of trace important for something?
We can also say for four vectors
A'^{\mu}=\frac{\partial x'^{\mu}}{\partial x^{\nu}}A^{\nu}
using this relation and
x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}
we get
A'^{\mu}=\alpha^{\mu}_{\nu}A^{\nu}
So
A'^{1}=\alpha^{1}_{\nu}A^{\nu}=\alpha^{1}_{1}A^{1}+\alpha^{1}_{4}A^{4}=\gamma A^{1}-\beta\gamma A^4=\gamma(A^1-\beta A^4)
A'^{2}=\alpha^{2}_{\nu}A^{\nu}=A^2
A'^{3}=A^3
A'^{4}=\alpha^{4}_{\nu}A^{\nu}=\alpha^{4}_{1}A^{1}+\alpha^{4}_{4}A^{4}=-\beta\gamma A^{1}+\gamma A^4=\gamma(A^4-\beta A^1)
Look now in antisymmetric tensors
A^{\nu\mu}=-A^{\mu\nu}
A'^{12}=\alpha^1_{\rho}\alpha^2_{\sigma}A^{\rho\sigma}
Nonzero terms are terms in which \rho takes values 1,4 and \sigma takes 2.
I have a question for component
A'^{14}=\alpha^1_{\rho}\alpha^4_{\sigma}A^{\rho\sigma}=\alpha^1_{1}\alpha^4_{1}A^{11}+\alpha^1_{1}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{1}A^{41}=-\beta\gamma^2A^{11}+\gamma^2A^{14}-\beta^2\gamma^2A^{14}-\beta\gamma^2A^{44}
Can I say if I look antisymmetric tensors A^{11}=A^{44}=0?
Then I will get
A'^{14}=A^{14}
Thanks for your answers!
\alpha is Lorrentz transformation matrix. Can I see something more about it? . It's symmetric. That is important.
Tr(\alpha)=2\gamma +2
Is this value of trace important for something?
We can also say for four vectors
A'^{\mu}=\frac{\partial x'^{\mu}}{\partial x^{\nu}}A^{\nu}
using this relation and
x'^{\mu}=\alpha^{\mu}_{\nu} x^{\nu}
we get
A'^{\mu}=\alpha^{\mu}_{\nu}A^{\nu}
So
A'^{1}=\alpha^{1}_{\nu}A^{\nu}=\alpha^{1}_{1}A^{1}+\alpha^{1}_{4}A^{4}=\gamma A^{1}-\beta\gamma A^4=\gamma(A^1-\beta A^4)
A'^{2}=\alpha^{2}_{\nu}A^{\nu}=A^2
A'^{3}=A^3
A'^{4}=\alpha^{4}_{\nu}A^{\nu}=\alpha^{4}_{1}A^{1}+\alpha^{4}_{4}A^{4}=-\beta\gamma A^{1}+\gamma A^4=\gamma(A^4-\beta A^1)
Look now in antisymmetric tensors
A^{\nu\mu}=-A^{\mu\nu}
A'^{12}=\alpha^1_{\rho}\alpha^2_{\sigma}A^{\rho\sigma}
Nonzero terms are terms in which \rho takes values 1,4 and \sigma takes 2.
I have a question for component
A'^{14}=\alpha^1_{\rho}\alpha^4_{\sigma}A^{\rho\sigma}=\alpha^1_{1}\alpha^4_{1}A^{11}+\alpha^1_{1}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{4}A^{44}+\alpha^1_{4}\alpha^4_{1}A^{41}=-\beta\gamma^2A^{11}+\gamma^2A^{14}-\beta^2\gamma^2A^{14}-\beta\gamma^2A^{44}
Can I say if I look antisymmetric tensors A^{11}=A^{44}=0?
Then I will get
A'^{14}=A^{14}
Thanks for your answers!
Last edited: