MHB What is the smallest side length BC of triangle ABC with fixed angle and area?

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Length
AI Thread Summary
To determine the smallest side length BC of triangle ABC with a fixed angle BAC equal to alpha and a fixed area S, the area formula is used: S = (1/2) * a^2 * (sin β * sin γ) / sin α. To minimize side BC (a), it is essential to maximize the expression 2 * sin β * sin(α + β). Calculus indicates that the maximum occurs when β equals γ, making the triangle isosceles. The resulting minimum value for BC is given by the formula a = √(2S * sin α) / cos(α/2). This provides a clear relationship between the triangle's dimensions and its fixed properties.
maxkor
Messages
79
Reaction score
0
Calculate what is the smallest side length BC of the triangle ABC if the angle BAC is equal alpha and area of the triangle ABC equals S.
 
Mathematics news on Phys.org
Are we to assume that ABC is a right triangle?
 
maxkor said:
Calculate what is the smallest side length BC of the triangle ABC if the angle BAC is equal alpha and area of the triangle ABC equals S.

Suppose that angle $$\alpha$$ is fixed and that the area of $$\triangle ABC = S$$ is fixed. We wish to find the smallest value of side $$BC=a$$.

If the other two angles are $$\beta$$ and $$\gamma$$ then $$\alpha + \beta + \gamma = 180$$ and $$\gamma = 180 - (\alpha+\beta)$$.

The area of $$\triangle ABC$$ is $$S = \dfrac{1}{2}a^2 \cdot \dfrac{\sin \beta \sin \gamma}{\sin \alpha}$$.

So we have that $$a^2 = \dfrac{2S \sin \alpha}{\sin \beta \sin \gamma} = \dfrac{4S \sin \alpha}{2\sin \beta \sin (\alpha+\beta)}$$.

To minimize $$a$$ we must maximize $$2\sin \beta \sin (\alpha+\beta)$$.

$$y = 2\sin \beta \sin (\alpha+\beta) = \cos \alpha - \cos(\alpha+2\beta)$$.

Standard calculus yields a maximum when $$\alpha+2\beta=180$$. That is, when $$\beta=\gamma$$ and the triangle is isosceles.

Substituting back, the minimum value of $$BC = a$$ = $$\dfrac{\sqrt{2S \sin \alpha}}{\cos \left(\dfrac{\alpha}{2}\right)}$$.

... I think!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top