MHB What is the Solution to This Definite Integral Challenge?

Click For Summary
The integral to evaluate is ∫(x/((sin x + cos x)cos x)) dx from 0 to π/4. Participants discuss various techniques for solving the integral, including substitution and integration by parts. The challenge lies in simplifying the expression involving sine and cosine functions. The solution requires careful manipulation of trigonometric identities. Ultimately, the integral can be evaluated to yield a specific numerical result.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$.

$$I=\int_0^{\pi/4} \frac{x}{(\sin x+\cos x)\cos x}\,dx=\int_0^{\pi/4} \frac{x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,(*)$$
Also,
$$I=\int_0^{\pi/4} \frac{\frac{\pi}{4}-x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,\,(**)$$
Add $(*)$ and $(**)$ to get:
$$2I=\frac{\pi}{4\sqrt{2}}\int_0^{\pi/4} \frac{dx}{\cos \left(\frac{\pi}{4}-x\right)\cos x}$$
$$\Rightarrow I=\frac{\pi}{8}\int_0^{\pi/4} \frac{\sin\left(\frac{\pi}{4}-x+x\right)}{\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx$$
Since
$$\sin\left(\frac{\pi}{4}-x+x\right)=\sin\left(\frac{\pi}{4}-x\right)\cos x+\cos \left(\frac{\pi}{4}-x\right)\sin x$$
Hence,
$$I=\frac{\pi}{8}\int_0^{\pi/4} \left(\tan\left(\frac{\pi}{4}-x\right)+\tan x\right)\,dx$$
$$\Rightarrow I=\frac{\pi}{4}\int_0^{\pi/4}\tan x\,dx$$
It can be shown that:
$$\int_0^{\pi/4} \tan x\,dx=\left(\ln(\sec x)\right|_0^{\pi/4}=\frac{1}{2}\ln 2$$
$$\Rightarrow \boxed{I=\dfrac{\pi}{8}\ln 2}$$
 
Pranav said:
$$I=\int_0^{\pi/4} \frac{x}{(\sin x+\cos x)\cos x}\,dx=\int_0^{\pi/4} \frac{x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,(*)$$
Also,
$$I=\int_0^{\pi/4} \frac{\frac{\pi}{4}-x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,\,(**)$$
Add $(*)$ and $(**)$ to get:
$$2I=\frac{\pi}{4\sqrt{2}}\int_0^{\pi/4} \frac{dx}{\cos \left(\frac{\pi}{4}-x\right)\cos x}$$
$$\Rightarrow I=\frac{\pi}{8}\int_0^{\pi/4} \frac{\sin\left(\frac{\pi}{4}-x+x\right)}{\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx$$
Since
$$\sin\left(\frac{\pi}{4}-x+x\right)=\sin\left(\frac{\pi}{4}-x\right)\cos x+\cos \left(\frac{\pi}{4}-x\right)\sin x$$
Hence,
$$I=\frac{\pi}{8}\int_0^{\pi/4} \left(\tan\left(\frac{\pi}{4}-x\right)+\tan x\right)\,dx$$
$$\Rightarrow I=\frac{\pi}{4}\int_0^{\pi/4}\tan x\,dx$$
It can be shown that:
$$\int_0^{\pi/4} \tan x\,dx=\left(\ln(\sec x)\right|_0^{\pi/4}=\frac{1}{2}\ln 2$$
$$\Rightarrow \boxed{I=\dfrac{\pi}{8}\ln 2}$$

Good job, Pranav! :o :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K