What is the Solution to This Definite Integral Challenge?

Click For Summary
SUMMARY

The integral challenge presented is to evaluate the definite integral $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$. The discussion highlights the successful evaluation of this integral, with Pranav receiving commendation for his solution. The integral involves trigonometric functions and requires knowledge of calculus techniques for evaluation.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with trigonometric identities
  • Knowledge of calculus techniques such as integration by parts
  • Experience with evaluating integrals involving trigonometric functions
NEXT STEPS
  • Study integration techniques, specifically integration by parts
  • Explore trigonometric identities and their applications in integration
  • Learn about the properties of definite integrals
  • Practice evaluating similar integrals involving trigonometric functions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus and integral evaluation, will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$.
 
Physics news on Phys.org
anemone said:
Evaluate $\displaystyle\int^{\dfrac{\pi}{4}}_0 \dfrac{x}{(\sin x+\cos x)\cos x}\ dx$.

$$I=\int_0^{\pi/4} \frac{x}{(\sin x+\cos x)\cos x}\,dx=\int_0^{\pi/4} \frac{x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,(*)$$
Also,
$$I=\int_0^{\pi/4} \frac{\frac{\pi}{4}-x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,\,(**)$$
Add $(*)$ and $(**)$ to get:
$$2I=\frac{\pi}{4\sqrt{2}}\int_0^{\pi/4} \frac{dx}{\cos \left(\frac{\pi}{4}-x\right)\cos x}$$
$$\Rightarrow I=\frac{\pi}{8}\int_0^{\pi/4} \frac{\sin\left(\frac{\pi}{4}-x+x\right)}{\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx$$
Since
$$\sin\left(\frac{\pi}{4}-x+x\right)=\sin\left(\frac{\pi}{4}-x\right)\cos x+\cos \left(\frac{\pi}{4}-x\right)\sin x$$
Hence,
$$I=\frac{\pi}{8}\int_0^{\pi/4} \left(\tan\left(\frac{\pi}{4}-x\right)+\tan x\right)\,dx$$
$$\Rightarrow I=\frac{\pi}{4}\int_0^{\pi/4}\tan x\,dx$$
It can be shown that:
$$\int_0^{\pi/4} \tan x\,dx=\left(\ln(\sec x)\right|_0^{\pi/4}=\frac{1}{2}\ln 2$$
$$\Rightarrow \boxed{I=\dfrac{\pi}{8}\ln 2}$$
 
Pranav said:
$$I=\int_0^{\pi/4} \frac{x}{(\sin x+\cos x)\cos x}\,dx=\int_0^{\pi/4} \frac{x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,(*)$$
Also,
$$I=\int_0^{\pi/4} \frac{\frac{\pi}{4}-x}{\sqrt{2}\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx\,\,\,(**)$$
Add $(*)$ and $(**)$ to get:
$$2I=\frac{\pi}{4\sqrt{2}}\int_0^{\pi/4} \frac{dx}{\cos \left(\frac{\pi}{4}-x\right)\cos x}$$
$$\Rightarrow I=\frac{\pi}{8}\int_0^{\pi/4} \frac{\sin\left(\frac{\pi}{4}-x+x\right)}{\cos \left(\frac{\pi}{4}-x\right)\cos x}\,dx$$
Since
$$\sin\left(\frac{\pi}{4}-x+x\right)=\sin\left(\frac{\pi}{4}-x\right)\cos x+\cos \left(\frac{\pi}{4}-x\right)\sin x$$
Hence,
$$I=\frac{\pi}{8}\int_0^{\pi/4} \left(\tan\left(\frac{\pi}{4}-x\right)+\tan x\right)\,dx$$
$$\Rightarrow I=\frac{\pi}{4}\int_0^{\pi/4}\tan x\,dx$$
It can be shown that:
$$\int_0^{\pi/4} \tan x\,dx=\left(\ln(\sec x)\right|_0^{\pi/4}=\frac{1}{2}\ln 2$$
$$\Rightarrow \boxed{I=\dfrac{\pi}{8}\ln 2}$$

Good job, Pranav! :o :)
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K