MHB What is the solution to this hard system of equations?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

This problem has been one big headache for me and I failed miserably every time that I attempted it. I thought to dump it into the trash, but I couldn't, simply because I would like very much to solve it.

So, I hope to get some good help from this site and I thank anyone who wants to help me out with this problem in advance.

Problem:

Solve the system in real numbers:

$\dfrac{1}{ab}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{5}{11}$

$\dfrac{1}{bc}+\dfrac{1}{c}+\dfrac{1}{a}=\dfrac{3}{8}$

$\dfrac{1}{ac}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{9}{11}$

Attempt:

Multiplying all of the three equations by $abc$ and then addding them up yields

$a+b+c+2(ab+bc+ca)=\dfrac{145abc}{88}$ which, I don't think, it helps much.

Attempt 2:

By rewriting the equations such that we would end up with an equation in terms of one variable, e.g. $a$ doesn't help much either...

I would show only the end result here:

$121(a^2-1-1)^2+(11()88)a(9a-16)(a^2-1-1)+88a^2(9a-16)^2=a(9a-16)(64+57a-136a^2)$
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

This problem has been one big headache for me and I failed miserably every time that I attempted it. I thought to dump it into the trash, but I couldn't, simply because I would like very much to solve it.

So, I hope to get some good help from this site and I thank anyone who wants to help me out with this problem in advance.

Problem:

Solve the system in real numbers:

$\dfrac{1}{ab}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{5}{11}$

$\dfrac{1}{bc}+\dfrac{1}{c}+\dfrac{1}{a}=\dfrac{3}{8}$

$\dfrac{1}{ac}+\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{9}{11}$

Attempt:

Multiplying all of the three equations by $abc$ and then addding them up yields

$a+b+c+2(ab+bc+ca)=\dfrac{145abc}{88}$ which, I don't think, it helps much.

Attempt 2:

By rewriting the equations such that we would end up with an equation in terms of one variable, e.g. $a$ doesn't help much either...

I would show only the end result here:

$121(a^2-1-1)^2+(11()88)a(9a-16)(a^2-1-1)+88a^2(9a-16)^2=a(9a-16)(64+57a-136a^2)$

in
$\dfrac{1}{ab}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{5}{11}$

you can put
$\dfrac{1}{ab}=\dfrac{1-b}{ab}+\dfrac{1}{a}$

to get
$\dfrac{1-b}{ab}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{5}{11}$

similarly other 2 equations and take differences and then result should follow
 
kaliprasad said:
...d take differences and then result should follow
Thanks for the reply, kaliprasad!:)

Okay, here is what I did following your hint, but I just couldn't see the way to finish it, am I missing something obvious here?(Tmi)

$\dfrac{1-b}{ab}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{5}{11}$---(1)

$\dfrac{1-c}{bc}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{3}{8}$---(2)

$\dfrac{1-a}{ac}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{9}{11}$---(3)

[TABLE="width: 700"]
[TR]
[TD](1)-(2) gives

$\dfrac{1-b}{ab}-\dfrac{1-c}{bc}=\dfrac{7}{88}$[/TD]
[TD](3)-(1) gives

$\dfrac{1-a}{ac}-\dfrac{1-b}{ab}=\dfrac{4}{11}$[/TD]
[/TR]
[/TABLE]

Sorry kaliprasad...I don't think the result of their difference or sum help here...:(

$\left(\dfrac{1-b}{ab}-\dfrac{1-c}{bc}\right)-\left(\dfrac{1-a}{ac}-\dfrac{1-b}{ab}\right)=\dfrac{7}{88}-\dfrac{4}{11}\implies\,\,\,2\left(\dfrac{1-b}{ab}\right)-\left(\dfrac{a+b-ac-ab}{abc}\right)=-\dfrac{25}{88}$

or

$\dfrac{1-a}{ac}-\dfrac{1-c}{bc}=\dfrac{39}{88}$

But, if I were to do it like the following, then I ended up with something different, I don't know, I am completely lost in this problem:

$\dfrac{1-b}{ab}-\dfrac{1-c}{bc}=\dfrac{7}{88}=\dfrac{7}{32}\cdot\dfrac{4}{11}=\dfrac{7}{32}\left(\dfrac{1-a}{ac}-\dfrac{1-b}{ab}\right)$

Simplifying gives

$39c-32a-7b=39bc-32ac-7ab$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K