MHB What is the strategy for solving Problem S395 in Mathematical Reflections?

  • Thread starter Thread starter vidyarth
  • Start date Start date
  • Tags Tags
    Minimization
Click For Summary
The problem S395 from Mathematical Reflections involves the equation $a^2b^2+b^2c^2+c^2a^2-69abc=2016$, where $a, b, c$ are positive integers. Traditional inequalities like AM-GM and Cauchy-Schwarz have proven ineffective in finding a solution. A suggested approach is to consider minimizing the values of $a, b, c$ by testing small integers starting from 1. The deadline for submission of solutions is January 15, 2017, prompting caution in sharing insights. Exploring the least values systematically may yield potential solutions.
vidyarth
Messages
16
Reaction score
0
If $a^2b^2+b^2c^2+c^2a^2-69abc=2016$, then, what can be said about the least value of $\min(a, b ,c)$?

This problem is unyielding to the major inequalities like AM-GM, Cauchy-Schwarz, etc. I also tried relating it to $x^3+y^3+z^3-3xyz=(x+y+z)(\sum_{cyc}x^2+\sum_{cyc}xy)$, but of no use. Any ideas. Thanks beforehand.

PS: This is problem S395 in Mathematical Reflections.
 
Mathematics news on Phys.org
vidyarth said:
If $a^2b^2+b^2c^2+c^2a^2-69abc=2016$, then, what can be said about the least value of $\min(a, b ,c)$?

This problem is unyielding to the major inequalities like AM-GM, Cauchy-Schwarz, etc. I also tried relating it to $x^3+y^3+z^3-3xyz=(x+y+z)(\sum_{cyc}x^2+\sum_{cyc}xy)$, but of no use. Any ideas. Thanks beforehand.

PS: This is problem S395 in Mathematical Reflections.
First, you need to include the information (given in the statement of Problem S395) that $a,b,c$ are positive integers. Without that information the problem does not make much sense.

Second, that section of Mathematical Reflections says that this problem is in a list whose deadline for submissions is January 15, 2017. So I wouldn't want to give away too many hints before then.

But just as a modest suggestion, I think that you might approach this problem along more naive lines than those that you suggest. If you want to minimise a positive integer then the smallest candidates are $1, 2, 3, \ldots $. So think about whether there is a possible solution with say $c=1$. If not , then how about $c=2,$ $c=3, \ldots$?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
8
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K