MHB What Is the Structure of Modules Over Polynomial Rings?

  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary
The discussion focuses on the structure of the $R$-module $M=\mathbb{R}^3$ over the polynomial ring $R=\mathbb{R}[t]$. It explores how the action of the polynomial $t$ on $M$ can be represented through a linear transformation, leading to an eigenspace decomposition of $\mathbb{R}^3$. The minimal polynomial of the transformation is identified as $t^2 - t$, while the characteristic polynomial is $t^2(t - 1)$. The decomposition reveals that $E_1$ corresponds to the factor $t - 1$, and the discussion seeks to identify the irreducible factors of the characteristic polynomial that annihilate the subspace $W = \{(0,b,c): b,c \in \mathbb{R}\}$. The thread ultimately aims to determine the lists of irreducible factors and their corresponding positive integers for the module structure.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit.

We consider the polynomial ring $R=\mathbb{R}[t]$ and the $R$-module $M=\mathbb{R}^3$, where $a\cdot x$ ( $a\in R,x\in M$ ) is defined as usual if $a\in \mathbb{R}$, and $a\cdot x=(x_1, 0, 0)$ if $a=t, x=(x_1, x_2, x_3)$.

From the structure theorem for finitely generated $R$-module there is a list $p_1, p_2, \dots , p_n$ irreducible of $R$ and a list $k_1, k_2, \dots , k_n$ positive integers such that $$M\cong R/\langle p_1^{k_1}\rangle \oplus \dots \oplus R/\langle p_n^{k_n}\rangle$$

How can we find these lists? (Wondering)
 
Physics news on Phys.org
This is similar to your last problem, although it may not appear so.

To whit, $t$ acts upon $v \in \Bbb R^3$ as the linear transformation:

$T(x,y,z) = (x,0,0)$.

Again, $T$ here satisfies the polynomial $t^2 - t$, and this is its minimal polynomial, but its characteristic polynomial is $t^2(t - 1)$.

We can immediately decompose $\Bbb R^3$ into the eigenspace decomposition:

$\Bbb R^3 = E_0 \oplus E_1$ where $E_0 = \text{ker }T$, and $E_1 = \{(a,0,0): a \in \Bbb R\}$.

It is clear that $E_1$ corresponds to $\Bbb R[t]/\langle t-1\rangle$ since

$(t - 1)\cdot (x,y,z) = t\cdot (x,y,z) - (x,y,z) = (x,0,0) - (x,y,z) = (0,-y,-z)$

so that $t - 1$ annihilates $(x,y,z)$ if and only if $y = z = 0$. Since $t - 1$ is irreducible, we have found one of the factors on our list.

Now you know that $E_0$ corresponds to the annihilator of the subspace $W = \{(0,b,c): b,c \in \Bbb R\} \cong \Bbb R^2$.

What possible irreducible factors of $t^2(t-1)$ are there that annihilate this subspace?
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K