MHB What Is the Structure of Modules Over Polynomial Rings?

  • Thread starter Thread starter mathmari
  • Start date Start date
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a commutative ring with unit.

We consider the polynomial ring $R=\mathbb{R}[t]$ and the $R$-module $M=\mathbb{R}^3$, where $a\cdot x$ ( $a\in R,x\in M$ ) is defined as usual if $a\in \mathbb{R}$, and $a\cdot x=(x_1, 0, 0)$ if $a=t, x=(x_1, x_2, x_3)$.

From the structure theorem for finitely generated $R$-module there is a list $p_1, p_2, \dots , p_n$ irreducible of $R$ and a list $k_1, k_2, \dots , k_n$ positive integers such that $$M\cong R/\langle p_1^{k_1}\rangle \oplus \dots \oplus R/\langle p_n^{k_n}\rangle$$

How can we find these lists? (Wondering)
 
Physics news on Phys.org
This is similar to your last problem, although it may not appear so.

To whit, $t$ acts upon $v \in \Bbb R^3$ as the linear transformation:

$T(x,y,z) = (x,0,0)$.

Again, $T$ here satisfies the polynomial $t^2 - t$, and this is its minimal polynomial, but its characteristic polynomial is $t^2(t - 1)$.

We can immediately decompose $\Bbb R^3$ into the eigenspace decomposition:

$\Bbb R^3 = E_0 \oplus E_1$ where $E_0 = \text{ker }T$, and $E_1 = \{(a,0,0): a \in \Bbb R\}$.

It is clear that $E_1$ corresponds to $\Bbb R[t]/\langle t-1\rangle$ since

$(t - 1)\cdot (x,y,z) = t\cdot (x,y,z) - (x,y,z) = (x,0,0) - (x,y,z) = (0,-y,-z)$

so that $t - 1$ annihilates $(x,y,z)$ if and only if $y = z = 0$. Since $t - 1$ is irreducible, we have found one of the factors on our list.

Now you know that $E_0$ corresponds to the annihilator of the subspace $W = \{(0,b,c): b,c \in \Bbb R\} \cong \Bbb R^2$.

What possible irreducible factors of $t^2(t-1)$ are there that annihilate this subspace?
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top