MHB What is the Sum of x, y, and z in a Non-Negative Real Number System?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
AI Thread Summary
The discussion centers on solving a system of equations involving non-negative real numbers x, y, and z. The equations provided are x^2 + y^2 + xy = 3, y^2 + z^2 + yz = 4, and z^2 + x^2 + xz = 1. Initially, a participant suggests that the sum x + y + z equals 3 * (8/9)^(3/4), but this is incorrect. The correct solution to the problem is that x + y + z equals √7. The conversation highlights the importance of verifying mathematical solutions in complex systems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$x,\,y$ and $z$ are non-negative real numbers that satisfy the following system:

$x^2+y^2+xy=3\\y^2+z^2+yz=4\\z^2+x^2+xz=1$

Evaluate $x+y+z$.
 
Mathematics news on Phys.org
Is answer 3* ${8 \over 9}^{3/4}$ That 8/9 whole power is 3/4
 
@anemone Can you please tell me the answer or solution?
 
DaalChawal said:
Is answer 3* ${8 \over 9}^{3/4}$ That 8/9 whole power is 3/4
Nope, the correct answer is $\sqrt{7}$.
 
$(1)\qquad x^2+y^2+xy=3,\\ (2)\qquad y^2+z^2+yz=4,\\ (3)\qquad z^2+x^2+xz=1.$
Subtract (1) from (2): $z^2 - x^2 + y(z-x) = 1$,
$(z-x)(z+x + y) = 1$,
$s(z-x) = 1$, where $s = x+y+z$. Therefore
$(4)\qquad z = x + \dfrac1s$.
In the same way, subtract (3) from (2): $y^2 - x^2 + z(y-x) = 3$ to get $s(y-x) = 3$ and therefore
$(5)\qquad y = x + \dfrac3s$.
From (4) and (5), $s = x+y+z = 3x + \dfrac4s$ and therefore
$(6)\qquad x = \dfrac13\left(s - \dfrac4s\right)$. Then from (6) and (4),
$(7)\qquad z = \dfrac13\left(s - \dfrac1s\right)$.
Now substitute (6) and (7) into (3): $\dfrac19\left(s - \dfrac4s\right)^2 + \dfrac19\left(s - \dfrac1s\right)^2 + \dfrac19\left(s - \dfrac4s\right)\left(s - \dfrac1s\right) = 1$,
$3s^2 - 15 + \dfrac{21}{s^2} = 9$,
$s^4 - 8s^2 + 7 = 0$,
$\bigl( s^2 - 1\bigr)\bigl( s^2 - 7\bigr) = 0$.
If $s = \pm1$ or $s = -\sqrt7$ then (from (6)) $x$ would be negative. So the only solution for which $x$, $y$ and $z$ are all positive is $s = \sqrt7$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top