What is the unknown circuit element in RLC circuit given plot of V, I?

  • Thread starter Thread starter zenterix
  • Start date Start date
  • Tags Tags
    Rlc circuit
Click For Summary

Homework Help Overview

The discussion revolves around identifying an unknown circuit element in an RLC circuit based on a provided plot of voltage and current. Participants analyze the phase relationships and mathematical relationships between current and voltage for inductors and capacitors.

Discussion Character

  • Exploratory, Assumption checking, Conceptual clarification

Approaches and Questions Raised

  • Participants explore different interpretations of the plot, considering the implications of phase differences between voltage and current. They analyze potential circuit elements (inductor and capacitor) based on these interpretations and derive equations for each case.

Discussion Status

Some participants have offered guidance regarding the importance of phase relationships, while others have acknowledged the potential for multiple interpretations of the plot. The discussion reflects an ongoing exploration of the problem rather than a definitive conclusion.

Contextual Notes

There is a noted lack of clarity regarding which curve represents voltage and which represents current, as the problem statement does not define curve colors or styles. This ambiguity contributes to the complexity of the analysis.

zenterix
Messages
774
Reaction score
84
Homework Statement
An AC source is connected to a single unknown circuit element as shown in the second picture below.

The driving frequency is ##\omega=100\text{rad/s}##.

The voltage and current are as in the plot in the third picture below.
Relevant Equations
Which of the following statements could be true
1714427276072.png


Here is the circuit

1714427309322.png


and here is the plot of current and voltage

1714427330490.png


we don't know which is which initially.

Just by looking at this plot, I conclude that the element cannot be a resistor because if it were then the phase would need to be zero.

Next, suppose the element is an inductor. Then

$$I_{L0}=\frac{V_{L0}}{\omega L}$$

where ##I_{L0}## and ##V_{L0}## are amplitudes of current and voltage for such a circuit.

Now, but visual inspection of the plot we see that we can have two cases.

Suppose the dashed graph is the current and the solid graph is the voltage. Then

$$\mathrm{200mA=\frac{10V}{100rad/s\cdot L}}$$

$$\implies L=\frac{1}{2}\text{H}$$

Next suppose that the dashed graph is the voltage and the solid graph is the current. Then

$$\mathrm{100mA=\frac{20V}{100rad/s\cdot L}}$$

$$\implies L=2\text{H}$$

Next, suppose the element is a capacitor. By analogous reasoning, but now using the equation

$$I_{C0}=\omega C V_{CO}$$

we reach two cases.

If the dashed line is current then we find that

$$\mathrm{200mA=100rad/s \cdot C\cdot 10V}$$

$$\implies C=\frac{0.2}{1000}=0.2\text{mF}$$

If the dashed line is voltage then

$$\mathrm{100mA=100rad/s\cdot C\cdot 20V}$$

$$\implies C=\frac{0.1}{2000}\text{F}=50\mathrm{\mu F}$$

If this is all correct I have shown that the four options selected in the first picture above are correct and that the two unselected options are incorrect. If this is so, the grading system is incorrect.

On the other hand, I guess it is more probable that I am making some mistake.
 
Physics news on Phys.org
You have to figure out which curve leads the other. Read about phases and ELI the ICE man here and try again.
 
  • Like
Likes   Reactions: zenterix
zenterix said:
On the other hand, I guess it is more probable that I am making some mistake.
Yes you are - you are ignoring the information about the phase difference between voltage and current shown in the graph.
 
  • Like
Likes   Reactions: zenterix
Okay, that is true. The dashed line lags the solid line.

If the dashed line is current, then this is like a circuit with an inductor.

If the solid line is current, on the other hand, then this is like a circuit with a capacitor.

And indeed the grading system shows this to be correct.
 
  • Like
Likes   Reactions: Tom.G
zenterix said:
Okay, that is true. The dashed line lags the solid line.

If the dashed line is current, then this is like a circuit with an inductor.

If the solid line is current, on the other hand, then this is like a circuit with a capacitor.

And indeed the grading system shows this to be correct.
I agree.
Without additional information, such as curve color or line style being defined as Voltage or Current (which they are not in the problem statement), both answers would be correct.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K