MHB What is the Upper Bound for a Holomorphic Function on the Hardy Space?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2016
Click For Summary
The discussion centers on a problem regarding holomorphic functions in the Hardy space on the open unit disc, specifically addressing the upper bound of such functions. It defines the Hardy space through the quantity N_p(f) and presents a theorem that establishes a bound on the modulus of a holomorphic function in relation to its distance from the boundary of the disc. The key result states that if a function f is in H^p, then its value at any point z in the disc is bounded by a function of N_p(f) and the distance to the boundary. The thread concludes with the assertion that no participants provided the correct solution to the problem of the week.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $\Bbb D$ denote the open unit disc in the complex plane. Given a holomorphic function $f$ on $\Bbb D$, define

$$N_p(f) := \sup_{0 < r < 1} \left[\frac{1}{2\pi}\int_{-\pi}^\pi \lvert f(re^{i\theta})\rvert^p\, d\theta\right]^{1/p},\quad 0 < p < \infty$$

The $p$th Hardy space on $\Bbb D$ consists of all holomorphic functions $f\in \mathcal{O}(\Bbb D)$ for which $N_p(f) < \infty$. Prove the following statement:

If $f\in H^p(\Bbb D)$ and $1\le p < \infty$, then for every $z\in \Bbb D$,

$$\lvert f(z)\rvert \le \rho(z,\partial \Bbb D)^{-2/p}N_p(f)$$

where $\rho(z,\partial \Bbb D)$ is the distance from $z$ to the boundary $\partial \Bbb D$.
-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's POTW correctly. Here is the solution:

The inequality holds even for $0 < p < \infty$. Fix $z\in \Bbb D$. Since $\lvert f\rvert^p$ is subharmonic on $\Bbb D$,

$$\lvert f \rvert^p \le \frac{1}{2\pi}\int_0^{2\pi} \lvert f(z + re^{i\theta})\,d\theta\quad (0 <r <1)$$

Let $\rho <d(z,\partial \Bbb D)$. Then

$$\frac{1}{2}\rho^2 \lvert f\rvert^p \le \int_0^\rho r\,dr\int_0^{2\pi} |f(z + re^{i\theta})|^p\, d\theta = \frac{1}{2\pi}\iint_{B(z,\rho)} \lvert f(x + yi)\rvert^p\, dx\, dy$$
$$ \le \frac{1}{2\pi}\iint_{\Bbb D} |f(x +yi)\rvert^p\, dx\, dy = \frac{1}{2\pi} \int_0^1 r\, dr \int_0^{2\pi} \lvert f(re^{i\theta})\, d\theta \le \frac{1}{2}[N_p(f)]^p$$

Hence, $\lvert f(z)\rvert \le R^{-2/p}N_p(f)$. Letting $R\to d(z,\Bbb D)^{-}$ we obtain the result.