MHB What is the Value of \(2\tan\frac{1}{2}A\tan\frac{1}{2}B\) in Triangle ABC?

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Trigonometry
AI Thread Summary
In triangle ABC, if sin A + sin B = 2 sin C, it leads to the conclusion that angles A and B are equal, specifically A = B = π/3. This equality results in the calculation of \(2\tan\frac{1}{2}A\tan\frac{1}{2}B\) yielding a value of \(\frac{2}{3}\). The derivation involves using trigonometric identities and simplifications based on the properties of sine and tangent functions. The final answer to the problem is \(\frac{2}{3}\). This demonstrates the relationship between the angles and the tangent values in the context of triangle ABC.
Monoxdifly
MHB
Messages
288
Reaction score
0
Suppose the angles in triangle ABC is A, B, and C. If sin A + sin B = 2 sin C, the value of $$2tan\frac12Atan\frac12B$$ is ...
A. $$\frac83$$
B. $$\sqrt6$$
C. $$\frac73$$
D. $$\frac23$$
E. $$\frac13\sqrt3$$

Since A, B, and C are the angles of triangle ABC, then C = 180° – (A + B)
sin A + sin B = 2 sin C
sin A + sin B = 2 sin(180° – (A + B))
sin A + sin B = 2 sin(A + B)
2 = $$\frac{sinA+sinB}{sin(A+B)}$$

$$2tan\frac12Atan\frac12B$$
$$\frac{sinA+sinB}{sin(A+B)}×tan\frac12Atan\frac12B$$
What am I supposed to do after this?
 
Mathematics news on Phys.org
$\sin{A} + \sin{B} = 2\sin(A+B)$

$\sin{A} + \sin{B} = 2(\sin{A}\cos{B} + \cos{A}\sin{B}) \implies \cos{B} = \cos{A} = \dfrac{1}{2} \implies A = B = \dfrac{\pi}{3}$

$2\tan^2\left(\dfrac{\pi}{6}\right) = \dfrac{2}{3}$
 
Thank you.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top