What is the Value of A in a Complex Mathematical Expression?

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Value
Click For Summary
SUMMARY

The value of A in the complex mathematical expression is calculated using the formula: $A=\dfrac {1+2^{200}+4^{200}+5^{200}+10^{200}+10^{200}+20^{200}+25^{200}+50^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$. The discussion confirms that the solution is correct, with participants expressing confidence in the answer. The mathematical operations involved are straightforward exponentiation and division.

PREREQUISITES
  • Understanding of exponentiation and its properties
  • Familiarity with basic algebraic manipulation
  • Knowledge of limits and behavior of functions as they approach infinity
  • Ability to interpret mathematical expressions and formulas
NEXT STEPS
  • Explore the concept of limits in calculus
  • Learn about the properties of exponential functions
  • Investigate mathematical series and their convergence
  • Study advanced algebra techniques for simplifying complex expressions
USEFUL FOR

Mathematicians, students studying algebra and calculus, and anyone interested in solving complex mathematical expressions.

Albert1
Messages
1,221
Reaction score
0
find value of A:

$A=\dfrac {1+2^{200}+4^{200}+5^{200}+10^{200}+10^{200}+20^{200}+25^{200}+50^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$
 
Physics news on Phys.org
Hey Albert, I can solve this one! :o
$A=\dfrac {1+2^{200}+4^{200}+5^{200}+10^{200}+10^{200}+20^{200}+25^{200}+50^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {1+\left(\frac{100}{50}\right)^{200}+\left(\frac{100}{25}\right)^{200}+\left(\frac{100}{20}\right)^{200}+\left(\frac{100}{10}\right)^{200}+\left(\frac{100}{10}\right)^{200}+\left(\frac{100}{5}\right)^{200}+\left(\frac{100}{4}\right)^{200}+\left(\frac{100}{2}\right)^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {1+100^{200}\left((\frac{1}{50})^{200}+(\frac{1}{25})^{200}+(\frac{1}{20})^{200}+(\frac{1}{10})^{200}+(\frac{1}{10})^{200}+(\frac{1}{5})^{200}+(\frac{1}{4})^{200}+(\frac{1}{2})^{200}+1\right)} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {100^{200}\left((\frac{1}{100})^{200}+(\frac{1}{50})^{200}+(\frac{1}{25})^{200}+(\frac{1}{20})^{200}+(\frac{1}{10})^{200}+(\frac{1}{10})^{200}+(\frac{1}{5})^{200}+(\frac{1}{4})^{200}+(\frac{1}{2})^{200}+1\right)} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {100^{200}\left(1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}\right)} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=100^{200}$
 
anemone :
perfect ! you got the answer (Yes)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K