MHB What is the Value of A in a Complex Mathematical Expression?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Value
Albert1
Messages
1,221
Reaction score
0
find value of A:

$A=\dfrac {1+2^{200}+4^{200}+5^{200}+10^{200}+10^{200}+20^{200}+25^{200}+50^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$
 
Mathematics news on Phys.org
Hey Albert, I can solve this one! :o
$A=\dfrac {1+2^{200}+4^{200}+5^{200}+10^{200}+10^{200}+20^{200}+25^{200}+50^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {1+\left(\frac{100}{50}\right)^{200}+\left(\frac{100}{25}\right)^{200}+\left(\frac{100}{20}\right)^{200}+\left(\frac{100}{10}\right)^{200}+\left(\frac{100}{10}\right)^{200}+\left(\frac{100}{5}\right)^{200}+\left(\frac{100}{4}\right)^{200}+\left(\frac{100}{2}\right)^{200}+100^{200}} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {1+100^{200}\left((\frac{1}{50})^{200}+(\frac{1}{25})^{200}+(\frac{1}{20})^{200}+(\frac{1}{10})^{200}+(\frac{1}{10})^{200}+(\frac{1}{5})^{200}+(\frac{1}{4})^{200}+(\frac{1}{2})^{200}+1\right)} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {100^{200}\left((\frac{1}{100})^{200}+(\frac{1}{50})^{200}+(\frac{1}{25})^{200}+(\frac{1}{20})^{200}+(\frac{1}{10})^{200}+(\frac{1}{10})^{200}+(\frac{1}{5})^{200}+(\frac{1}{4})^{200}+(\frac{1}{2})^{200}+1\right)} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=\dfrac {100^{200}\left(1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}\right)} {1+2^{-200}+4^{-200}+5^{-200}+10^{-200}+10^{-200}+20^{-200}+25^{-200}+50^{-200}+100^{-200}}$

$A=100^{200}$
 
anemone :
perfect ! you got the answer (Yes)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
1K
Replies
3
Views
2K
Replies
2
Views
3K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K