MHB What is the value of Angle BMC in Triangle ABC?

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Angle Value
Click For Summary
In triangle ABC, angles BAC and ACB are both 50 degrees, making angle ABC 80 degrees. Given point M inside the triangle, with angles MAC at 10 degrees and MCA at 30 degrees, the remaining angle AMC can be calculated as 180 - (10 + 30) = 140 degrees. Using the triangle angle sum property in triangle BMC, angle BMC can be determined as 180 - (80 + 140) = -40 degrees, which is not possible. Thus, the correct approach involves recalculating the angles or verifying the given conditions to find a valid angle for BMC.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC ,if \,\, \angle BAC=\angle ACB=50^o$

point $M$ is an inner point of $\triangle ABC ,$

given :$\angle MAC=10^o$ and $\angle MCA=30^o$

find the value of $\angle BMC=?$
 
Mathematics news on Phys.org
Albert said:
$\triangle ABC ,if \,\, \angle BAC=\angle ACB=50^o$

point $M$ is an inner point of $\triangle ABC ,$

given :$\angle MAC=10^o$ and $\angle MCA=30^o$

find the value of $\angle BMC=?$
my solution:
 

Attachments

  • Angle BMC.jpg
    Angle BMC.jpg
    18.7 KB · Views: 111
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 21 ·
Replies
21
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K