tahayassen
- 269
- 1
I understand your post Steely Dan, but I was just wondering why I'm not getting the approximate value of 2 when I tried it myself:
http://i2.lulzimg.com/7009a29b9a.png
Tex version:
Ignoring\quad coefficients...\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }(1^{ n }{ ({ n }^{ -1 }) }^{ 0 }+{ 1 }^{ n-1 }{ ({ n }^{ -1 }) }^{ 1 }+{ 1 }^{ n-2 }{ ({ n }^{ -1 }) }^{ 2 }+\quad ...\quad +{ 1 }^{ 1 }{ ({ n }^{ -1 }) }^{ n-1 }+{ 1 }^{ 0 }{ ({ n }^{ -1 }) }^{ n })\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }(1+{ n }^{ -1 }+{ n }^{ -2 }+\quad ...\quad +{ n }^{ -n+1 }+{ n }^{ -n })\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }\left[ { n }^{ -n }({ n }^{ n }+{ n }^{ n-1 }+{ n }^{ n-2 }+\quad ...\quad +{ n }^{ 1 }+{ n }^{ 0 }) \right] \\ Ignoring\quad everything\quad except\quad the\quad first\quad two\quad terms...\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }\left[ { n }^{ -n }({ n }^{ n }+{ n }^{ n-1 }) \right] \\ { (1+{ n }^{ -1 }) }^{ n }={ \infty }^{ -n }(\infty ^{ n }+{ \infty }^{ n-1 })
Results:
http://i2.lulzimg.com/912d8aca39.png
Am I doing something wrong? Do the coefficients matter? How did you get the coefficients of (n-1)?
http://i2.lulzimg.com/7009a29b9a.png
Tex version:
Ignoring\quad coefficients...\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }(1^{ n }{ ({ n }^{ -1 }) }^{ 0 }+{ 1 }^{ n-1 }{ ({ n }^{ -1 }) }^{ 1 }+{ 1 }^{ n-2 }{ ({ n }^{ -1 }) }^{ 2 }+\quad ...\quad +{ 1 }^{ 1 }{ ({ n }^{ -1 }) }^{ n-1 }+{ 1 }^{ 0 }{ ({ n }^{ -1 }) }^{ n })\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }(1+{ n }^{ -1 }+{ n }^{ -2 }+\quad ...\quad +{ n }^{ -n+1 }+{ n }^{ -n })\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }\left[ { n }^{ -n }({ n }^{ n }+{ n }^{ n-1 }+{ n }^{ n-2 }+\quad ...\quad +{ n }^{ 1 }+{ n }^{ 0 }) \right] \\ Ignoring\quad everything\quad except\quad the\quad first\quad two\quad terms...\\ { (1+{ n }^{ -1 }) }^{ n }={ \underset { n\rightarrow \infty }{ lim } }\left[ { n }^{ -n }({ n }^{ n }+{ n }^{ n-1 }) \right] \\ { (1+{ n }^{ -1 }) }^{ n }={ \infty }^{ -n }(\infty ^{ n }+{ \infty }^{ n-1 })
Results:
http://i2.lulzimg.com/912d8aca39.png
Am I doing something wrong? Do the coefficients matter? How did you get the coefficients of (n-1)?
Last edited by a moderator: