What Must the Muzzle Velocity Be for a Shell to Clear a Cliff?

Click For Summary
SUMMARY

The minimum muzzle velocity required for a cannon to clear a 25.0 m tall cliff from a distance of 60.0 m, while firing at an angle of 43.0°, is calculated to be approximately 40.9 m/s. The solution involves determining the initial vertical and horizontal components of velocity, with the vertical component reaching 32.47 m/s at the peak height. The time of flight to reach this height is approximately 3.31 seconds, leading to the necessary horizontal component of 24.78 m/s. The assumption that the shell must reach the cliff's height at its peak is incorrect; the trajectory must be analyzed to ensure it clears the cliff at any point.

PREREQUISITES
  • Understanding of projectile motion principles
  • Knowledge of trigonometric functions in physics
  • Familiarity with kinematic equations
  • Basic skills in sketching trajectories for visual analysis
NEXT STEPS
  • Study the concept of projectile motion in detail
  • Learn about the effects of angle and initial velocity on projectile trajectories
  • Explore kinematic equations for vertical and horizontal motion
  • Practice sketching projectile paths for various initial conditions
USEFUL FOR

Physics students, educators, and anyone interested in understanding projectile motion and its applications in real-world scenarios.

Insolite
Messages
7
Reaction score
0
Question:

A cannon, located ##60.0 m## from the base of a vertical ##25.0 m## tall cliff, shoots a ##15 kg## shell at ##43.0°## above the horizontal toward the cliff. What must the minimum muzzle velocity be for the shell to clear the top of the cliff?

I have attempted a solution that I'm doubtful is correct as I have made the assumption that the shell glances the edge of the cliff at the highest point of its trajectory and I'm not certain whether this is necessary (as in it may just clear the cliff at a point in its trajectory that is before the highest point). However, without making this assumption I don't know how to proceed with the question.

Solution:

Finding the initial ##y##-component of velocity, where the max height of projectile is assumed to be the height of the cliff, ##25 m##, where ##v_{y} = 0## -
##v_{y}^{2} = v_{0y}^{2}sin^{2}{α} - 2g(25)##
##0 = v_{0y}^{2}sin^{2}{43°} - 2g(25)##
##50g = v_{0y}^{2}sin^{2}{43°}##
##v_{0y} ≈ 32.47 ms^{-1}##

Finding the initial ##x##-component of velocity, where I have reversed the set-up and calculated the time taken for the projectile to go from ##v_{0y} = 0## to ##v_{y} = 32.47 ms^{-1}## in the ##y##-axis -
##v_{y} = v_{0y} - (-g)t##
##v_{y} = gt##
##t ≈ \frac{32.47}{9.81}##
##t ≈ 3.31 s##

Finding the initial ##x##-component of velocity -
##x = (v_{0x}cosα)t##
##v_{0x} = \frac{x}{tcos43°}##
##v_{0x} = \frac{60.0}{3.31cos43°}##
##v_{0x} ≈ 24.78 ms^{-1}##

The magnitude of the initial muzzle velocity -
##v = \sqrt{v_{0x}^{2} + v_{0y}^{2}}##
##v = \sqrt{24.78^{2} + 32.47^{2}}##
##v = 40.9 ms^{-1}##

Any help or advise is appreciated.
Thanks.
 
Physics news on Phys.org
Insolite said:
Finding the initial ##y##-component of velocity, where the max height of projectile is assumed to be the height of the cliff,
That's not a valid assumption. The cannon's angle is fixed. If you reduce the muzzle velocity to the point where the maximum height of the trajectory would be the height of the cliff, the point where it reaches that height might be beyond the cliff.
 
To get a feel for the problem, make a sketch of the setup that is roughly to scale with a projection angle 43o≈45o. Draw some trajectories for different initial speeds.

When the initial speed is such that the shell barely clears the cliff, does it look like vy = 0 when the shell is just over the cliff?

[oops, I see haruspex posted while I was constructing my post. Sorry.]
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
11
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K